Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 131 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 40 + 127\cdot 131 + 2\cdot 131^{2} + 74\cdot 131^{3} + 100\cdot 131^{4} + 105\cdot 131^{6} +O\left(131^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 41 + 20\cdot 131 + 104\cdot 131^{2} + 114\cdot 131^{3} + 40\cdot 131^{4} + 13\cdot 131^{5} + 29\cdot 131^{6} +O\left(131^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 43 + 50\cdot 131 + 58\cdot 131^{2} + 123\cdot 131^{3} + 35\cdot 131^{4} + 84\cdot 131^{5} + 49\cdot 131^{6} +O\left(131^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 45 + 30\cdot 131 + 118\cdot 131^{2} + 128\cdot 131^{3} + 67\cdot 131^{4} + 55\cdot 131^{5} + 4\cdot 131^{6} +O\left(131^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 49 + 14\cdot 131 + 46\cdot 131^{2} + 64\cdot 131^{3} + 58\cdot 131^{4} + 39\cdot 131^{5} + 92\cdot 131^{6} +O\left(131^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 77 + 117\cdot 131 + 67\cdot 131^{2} + 8\cdot 131^{3} + 51\cdot 131^{4} + 41\cdot 131^{5} +O\left(131^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 110 + 75\cdot 131 + 15\cdot 131^{2} + 81\cdot 131^{3} + 99\cdot 131^{4} + 30\cdot 131^{5} + 69\cdot 131^{6} +O\left(131^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 122 + 87\cdot 131 + 110\cdot 131^{2} + 59\cdot 131^{3} + 69\cdot 131^{4} + 127\cdot 131^{5} + 42\cdot 131^{6} +O\left(131^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,5)(2,3)(4,7)(6,8)$ |
| $(1,7,3,5)(2,4,6,8)$ |
| $(1,3)(2,6)(4,8)(5,7)$ |
| $(1,8)(2,7)(3,4)(5,6)$ |
| $(1,8)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,7)(3,4)(5,6)$ | $-4$ |
| $2$ | $2$ | $(1,3)(2,6)(4,8)(5,7)$ | $0$ |
| $2$ | $2$ | $(1,8)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,6)(3,8)(5,7)$ | $0$ |
| $4$ | $2$ | $(1,5)(2,3)(4,7)(6,8)$ | $0$ |
| $4$ | $4$ | $(1,5,3,7)(2,8,6,4)$ | $0$ |
| $4$ | $4$ | $(1,7,3,5)(2,4,6,8)$ | $0$ |
| $4$ | $4$ | $(1,5,8,6)(2,4,7,3)$ | $0$ |
| $4$ | $4$ | $(1,4,8,3)(2,7)$ | $0$ |
| $4$ | $4$ | $(1,3,8,4)(2,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.