Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 541 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 110 + 478\cdot 541 + 11\cdot 541^{2} + 164\cdot 541^{3} + 285\cdot 541^{4} + 199\cdot 541^{5} + 115\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 189 + 185\cdot 541 + 444\cdot 541^{2} + 533\cdot 541^{3} + 244\cdot 541^{4} + 207\cdot 541^{5} + 95\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 290 + 433\cdot 541 + 427\cdot 541^{2} + 218\cdot 541^{3} + 337\cdot 541^{4} + 332\cdot 541^{5} + 119\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 300 + 127\cdot 541 + 286\cdot 541^{2} + 76\cdot 541^{3} + 68\cdot 541^{4} + 329\cdot 541^{5} + 64\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 308 + 501\cdot 541 + 418\cdot 541^{2} + 492\cdot 541^{3} + 265\cdot 541^{4} + 54\cdot 541^{5} + 86\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 312 + 298\cdot 541 + 82\cdot 541^{2} + 18\cdot 541^{3} + 384\cdot 541^{4} + 530\cdot 541^{5} + 74\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 319 + 135\cdot 541 + 85\cdot 541^{2} + 45\cdot 541^{3} + 213\cdot 541^{4} + 181\cdot 541^{5} + 410\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 339 + 3\cdot 541 + 407\cdot 541^{2} + 73\cdot 541^{3} + 365\cdot 541^{4} + 328\cdot 541^{5} + 115\cdot 541^{6} +O\left(541^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8,6,3)(2,7,4,5)$ |
| $(2,6)(5,8)$ |
| $(1,5,4,8)(2,7)(3,6)$ |
| $(3,7)(5,8)$ |
| $(1,4)(2,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,4)(2,6)(3,7)(5,8)$ | $-4$ |
| $2$ | $2$ | $(1,4)(2,6)$ | $0$ |
| $4$ | $2$ | $(1,6)(2,4)(3,8)(5,7)$ | $0$ |
| $4$ | $2$ | $(1,4)(5,8)$ | $0$ |
| $8$ | $2$ | $(1,2)(4,6)(5,8)$ | $0$ |
| $4$ | $4$ | $(1,2,4,6)$ | $2$ |
| $4$ | $4$ | $(1,6,4,2)(3,8,7,5)$ | $0$ |
| $4$ | $4$ | $(1,2,4,6)(3,7)(5,8)$ | $-2$ |
| $8$ | $4$ | $(1,8,6,3)(2,7,4,5)$ | $0$ |
| $8$ | $4$ | $(1,3,6,8)(2,5,4,7)$ | $0$ |
| $8$ | $4$ | $(1,5,4,8)(2,7)(3,6)$ | $0$ |
| $8$ | $4$ | $(1,8,4,5)(2,7)(3,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.