Properties

Label 4.5e3_41e2.8t30.3c1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 5^{3} \cdot 41^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$210125= 5^{3} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 2 x^{6} + 4 x^{5} - x^{4} - 4 x^{3} + 2 x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 541 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 110 + 478\cdot 541 + 11\cdot 541^{2} + 164\cdot 541^{3} + 285\cdot 541^{4} + 199\cdot 541^{5} + 115\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 189 + 185\cdot 541 + 444\cdot 541^{2} + 533\cdot 541^{3} + 244\cdot 541^{4} + 207\cdot 541^{5} + 95\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 290 + 433\cdot 541 + 427\cdot 541^{2} + 218\cdot 541^{3} + 337\cdot 541^{4} + 332\cdot 541^{5} + 119\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 300 + 127\cdot 541 + 286\cdot 541^{2} + 76\cdot 541^{3} + 68\cdot 541^{4} + 329\cdot 541^{5} + 64\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 308 + 501\cdot 541 + 418\cdot 541^{2} + 492\cdot 541^{3} + 265\cdot 541^{4} + 54\cdot 541^{5} + 86\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 312 + 298\cdot 541 + 82\cdot 541^{2} + 18\cdot 541^{3} + 384\cdot 541^{4} + 530\cdot 541^{5} + 74\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 319 + 135\cdot 541 + 85\cdot 541^{2} + 45\cdot 541^{3} + 213\cdot 541^{4} + 181\cdot 541^{5} + 410\cdot 541^{6} +O\left(541^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 339 + 3\cdot 541 + 407\cdot 541^{2} + 73\cdot 541^{3} + 365\cdot 541^{4} + 328\cdot 541^{5} + 115\cdot 541^{6} +O\left(541^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,6,3)(2,7,4,5)$
$(2,6)(5,8)$
$(1,5,4,8)(2,7)(3,6)$
$(3,7)(5,8)$
$(1,4)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,4)(2,6)(3,7)(5,8)$$-4$
$2$$2$$(1,4)(2,6)$$0$
$4$$2$$(1,6)(2,4)(3,8)(5,7)$$0$
$4$$2$$(1,4)(5,8)$$0$
$8$$2$$(1,2)(4,6)(5,8)$$0$
$4$$4$$(1,2,4,6)$$2$
$4$$4$$(1,6,4,2)(3,8,7,5)$$0$
$4$$4$$(1,2,4,6)(3,7)(5,8)$$-2$
$8$$4$$(1,8,6,3)(2,7,4,5)$$0$
$8$$4$$(1,3,6,8)(2,5,4,7)$$0$
$8$$4$$(1,5,4,8)(2,7)(3,6)$$0$
$8$$4$$(1,8,4,5)(2,7)(3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.