Properties

Label 4.5e3_41e2.8t30.2
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 5^{3} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$210125= 5^{3} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} - 9 x^{4} - 20 x^{3} - 9 x^{2} - 5 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 541 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 115 + 243\cdot 541 + 267\cdot 541^{2} + 354\cdot 541^{3} + 454\cdot 541^{4} + 303\cdot 541^{5} + 55\cdot 541^{6} + 290\cdot 541^{7} +O\left(541^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 127 + 314\cdot 541 + 440\cdot 541^{2} + 443\cdot 541^{3} + 64\cdot 541^{4} + 300\cdot 541^{5} + 368\cdot 541^{6} + 329\cdot 541^{7} +O\left(541^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 131 + 399\cdot 541 + 202\cdot 541^{2} + 94\cdot 541^{3} + 501\cdot 541^{4} + 522\cdot 541^{5} + 529\cdot 541^{6} + 437\cdot 541^{7} +O\left(541^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 263 + 41\cdot 541 + 387\cdot 541^{2} + 143\cdot 541^{3} + 386\cdot 541^{4} + 294\cdot 541^{5} + 88\cdot 541^{6} + 431\cdot 541^{7} +O\left(541^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 312 + 328\cdot 541 + 46\cdot 541^{2} + 387\cdot 541^{3} + 138\cdot 541^{4} + 86\cdot 541^{5} + 268\cdot 541^{6} + 165\cdot 541^{7} +O\left(541^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 365 + 311\cdot 541 + 24\cdot 541^{2} + 438\cdot 541^{3} + 328\cdot 541^{4} + 135\cdot 541^{5} + 476\cdot 541^{6} + 485\cdot 541^{7} +O\left(541^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 412 + 387\cdot 541 + 261\cdot 541^{2} + 413\cdot 541^{3} + 44\cdot 541^{4} + 470\cdot 541^{5} + 529\cdot 541^{6} + 289\cdot 541^{7} +O\left(541^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 439 + 137\cdot 541 + 533\cdot 541^{2} + 429\cdot 541^{3} + 244\cdot 541^{4} + 50\cdot 541^{5} + 388\cdot 541^{6} + 274\cdot 541^{7} +O\left(541^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,2)(4,7,6,5)$
$(1,5)(2,6)(3,4)(7,8)$
$(1,5)(3,4)$
$(1,5)(2,3)(4,6)$
$(1,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,5)(2,6)(3,4)(7,8)$ $-4$
$2$ $2$ $(2,6)(3,4)$ $0$
$4$ $2$ $(1,8)(2,3)(4,6)(5,7)$ $0$
$4$ $2$ $(1,5)(3,4)$ $0$
$8$ $2$ $(1,5)(2,3)(4,6)$ $0$
$4$ $4$ $(2,3,6,4)$ $2$
$4$ $4$ $(1,5)(2,4,6,3)(7,8)$ $-2$
$4$ $4$ $(1,8,5,7)(2,3,6,4)$ $0$
$8$ $4$ $(1,3,8,2)(4,7,6,5)$ $0$
$8$ $4$ $(1,2,8,3)(4,5,6,7)$ $0$
$8$ $4$ $(1,2)(3,8,4,7)(5,6)$ $0$
$8$ $4$ $(1,2)(3,7,4,8)(5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.