Properties

Label 4.5e3_41e2.8t21.1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 5^{3} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$210125= 5^{3} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 12 x^{6} - 13 x^{5} + 24 x^{4} - 13 x^{3} + 12 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 661 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 40 + 644\cdot 661 + 285\cdot 661^{2} + 110\cdot 661^{3} + 344\cdot 661^{4} +O\left(661^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 314 + 480\cdot 661 + 24\cdot 661^{2} + 289\cdot 661^{3} + 617\cdot 661^{4} +O\left(661^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 400 + 436\cdot 661 + 262\cdot 661^{2} + 446\cdot 661^{3} + 214\cdot 661^{4} +O\left(661^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 428 + 602\cdot 661 + 640\cdot 661^{2} + 390\cdot 661^{3} + 452\cdot 661^{4} +O\left(661^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 447 + 61\cdot 661 + 226\cdot 661^{2} + 630\cdot 661^{3} + 221\cdot 661^{4} +O\left(661^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 522 + 135\cdot 661 + 124\cdot 661^{2} + 292\cdot 661^{3} + 138\cdot 661^{4} +O\left(661^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 538 + 591\cdot 661 + 95\cdot 661^{2} + 262\cdot 661^{3} + 278\cdot 661^{4} +O\left(661^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 618 + 351\cdot 661 + 322\cdot 661^{2} + 222\cdot 661^{3} + 376\cdot 661^{4} +O\left(661^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,6,7)(2,4,5,8)$
$(1,2)(5,6)$
$(1,7)(2,8)(3,5)(4,6)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $-4$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $2$ $(1,6)(2,5)(3,7)(4,8)$ $0$
$2$ $2$ $(1,2)(5,6)$ $0$
$4$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$4$ $4$ $(1,7,6,3)(2,8,5,4)$ $0$
$4$ $4$ $(1,3,6,7)(2,4,5,8)$ $0$
$4$ $4$ $(1,7,2,8)(3,6,4,5)$ $0$
$4$ $4$ $(1,5,2,6)(3,4)$ $0$
$4$ $4$ $(1,6,2,5)(3,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.