Properties

Label 4.5e3_409e2.12t34.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{3} \cdot 409^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$20910125= 5^{3} \cdot 409^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 25 x^{3} - 22 x^{2} - 23 x + 30 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 59 a + 12 + \left(84 a + 33\right)\cdot 109 + \left(66 a + 60\right)\cdot 109^{2} + \left(75 a + 27\right)\cdot 109^{3} + \left(22 a + 74\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 17\cdot 109 + 6\cdot 109^{2} + 45\cdot 109^{3} + 13\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 69 a + 33 + \left(89 a + 96\right)\cdot 109 + \left(103 a + 28\right)\cdot 109^{2} + \left(6 a + 25\right)\cdot 109^{3} + \left(32 a + 55\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 40 a + 102 + \left(19 a + 7\right)\cdot 109 + \left(5 a + 43\right)\cdot 109^{2} + \left(102 a + 37\right)\cdot 109^{3} + \left(76 a + 80\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 84 + 4\cdot 109 + 37\cdot 109^{2} + 46\cdot 109^{3} + 82\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 a + 71 + \left(24 a + 58\right)\cdot 109 + \left(42 a + 42\right)\cdot 109^{2} + \left(33 a + 36\right)\cdot 109^{3} + \left(86 a + 21\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)$
$(1,3)(2,4)(5,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$0$
$6$$2$$(2,6)$$-2$
$9$$2$$(2,6)(4,5)$$0$
$4$$3$$(1,2,6)$$1$
$4$$3$$(1,2,6)(3,4,5)$$-2$
$18$$4$$(1,3)(2,5,6,4)$$0$
$12$$6$$(1,4,2,5,6,3)$$0$
$12$$6$$(2,6)(3,4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.