Properties

Label 4.5e3_37e2.5t3.1
Dimension 4
Group $F_5$
Conductor $ 5^{3} \cdot 37^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$171125= 5^{3} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 2 x^{3} + x^{2} + 2 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 23\cdot 31 + 8\cdot 31^{2} + 2\cdot 31^{3} + 11\cdot 31^{4} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 9 + \left(7 a + 8\right)\cdot 31 + \left(28 a + 9\right)\cdot 31^{2} + 22\cdot 31^{3} + \left(13 a + 8\right)\cdot 31^{4} + \left(8 a + 9\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 20 + \left(23 a + 2\right)\cdot 31 + \left(2 a + 27\right)\cdot 31^{2} + \left(30 a + 26\right)\cdot 31^{3} + \left(17 a + 2\right)\cdot 31^{4} + \left(22 a + 13\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 1 + \left(19 a + 3\right)\cdot 31 + \left(16 a + 17\right)\cdot 31^{2} + \left(22 a + 6\right)\cdot 31^{3} + \left(10 a + 20\right)\cdot 31^{4} + \left(9 a + 15\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 6 + \left(11 a + 24\right)\cdot 31 + \left(14 a + 30\right)\cdot 31^{2} + \left(8 a + 3\right)\cdot 31^{3} + \left(20 a + 19\right)\cdot 31^{4} + \left(21 a + 23\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(2,4,3,5)$
$(2,3)(4,5)$
$(1,3,4,5,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$5$ $2$ $(2,3)(4,5)$ $0$
$5$ $4$ $(2,4,3,5)$ $0$
$5$ $4$ $(2,5,3,4)$ $0$
$4$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.