Properties

Label 4.5e3_31e2_41e2.12t36.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{3} \cdot 31^{2} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$201930125= 5^{3} \cdot 31^{2} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 15 x^{4} + 13 x^{3} + 67 x^{2} + 24 x + 320 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 23\cdot 29 + 13\cdot 29^{2} + 18\cdot 29^{3} + 20\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 a + \left(23 a + 10\right)\cdot 29 + \left(28 a + 5\right)\cdot 29^{2} + \left(16 a + 6\right)\cdot 29^{3} + \left(19 a + 7\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 22 + \left(5 a + 24\right)\cdot 29 + 9\cdot 29^{2} + \left(12 a + 4\right)\cdot 29^{3} + \left(9 a + 1\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 9 + 22\cdot 29 + 6\cdot 29^{2} + 23\cdot 29^{3} + 20\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 6 + \left(20 a + 7\right)\cdot 29 + \left(27 a + 10\right)\cdot 29^{2} + \left(8 a + 23\right)\cdot 29^{3} + \left(20 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 15 + \left(8 a + 28\right)\cdot 29 + \left(a + 11\right)\cdot 29^{2} + \left(20 a + 11\right)\cdot 29^{3} + \left(8 a + 21\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,4)(2,5)(3,6)$ $0$
$6$ $2$ $(1,2)$ $-2$
$9$ $2$ $(1,2)(4,5)$ $0$
$4$ $3$ $(1,2,3)(4,5,6)$ $-2$
$4$ $3$ $(4,5,6)$ $1$
$18$ $4$ $(1,5,2,4)(3,6)$ $0$
$12$ $6$ $(1,4,2,5,3,6)$ $0$
$12$ $6$ $(1,2)(4,5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.