Basic invariants
| Dimension: | $4$ |
| Group: | $C_3^2:C_4$ |
| Conductor: | \(88410125\)\(\medspace = 5^{3} \cdot 29^{4} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin number field: | Galois closure of 6.2.442050625.2 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $C_3^2:C_4$ |
| Parity: | even |
| Projective image: | $C_3^2:C_4$ |
| Projective field: | Galois closure of 6.2.442050625.2 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$:
\( x^{2} + 18x + 2 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 18 a + 6 + \left(11 a + 6\right)\cdot 19 + \left(15 a + 6\right)\cdot 19^{2} + \left(17 a + 18\right)\cdot 19^{3} + \left(8 a + 2\right)\cdot 19^{4} + \left(15 a + 3\right)\cdot 19^{5} + \left(12 a + 3\right)\cdot 19^{6} + \left(12 a + 15\right)\cdot 19^{7} + \left(a + 3\right)\cdot 19^{8} + \left(11 a + 1\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 2 }$ | $=$ |
\( a + 5 + 7 a\cdot 19 + \left(3 a + 10\right)\cdot 19^{2} + \left(a + 1\right)\cdot 19^{3} + \left(10 a + 13\right)\cdot 19^{4} + \left(3 a + 9\right)\cdot 19^{5} + 6 a\cdot 19^{6} + \left(6 a + 15\right)\cdot 19^{7} + \left(17 a + 11\right)\cdot 19^{8} + \left(7 a + 10\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 3 }$ | $=$ |
\( 14 + 14\cdot 19 + 12\cdot 19^{2} + 13\cdot 19^{3} + 10\cdot 19^{4} + 2\cdot 19^{6} + 19^{7} + 12\cdot 19^{8} + 11\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 4 }$ | $=$ |
\( 16 a + 13 + \left(17 a + 13\right)\cdot 19 + \left(11 a + 13\right)\cdot 19^{2} + \left(9 a + 8\right)\cdot 19^{3} + \left(4 a + 16\right)\cdot 19^{4} + \left(11 a + 13\right)\cdot 19^{5} + 14 a\cdot 19^{6} + \left(5 a + 8\right)\cdot 19^{7} + \left(11 a + 15\right)\cdot 19^{8} + \left(12 a + 9\right)\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 5 }$ | $=$ |
\( 12 + 6\cdot 19 + 6\cdot 19^{2} + 8\cdot 19^{3} + 2\cdot 19^{4} + 9\cdot 19^{5} + 8\cdot 19^{6} + 18\cdot 19^{7} + 11\cdot 19^{8} + 12\cdot 19^{9} +O(19^{10})\)
|
| $r_{ 6 }$ | $=$ |
\( 3 a + 10 + \left(a + 15\right)\cdot 19 + \left(7 a + 7\right)\cdot 19^{2} + \left(9 a + 6\right)\cdot 19^{3} + \left(14 a + 11\right)\cdot 19^{4} + \left(7 a + 1\right)\cdot 19^{5} + \left(4 a + 4\right)\cdot 19^{6} + \left(13 a + 18\right)\cdot 19^{7} + \left(7 a + 1\right)\cdot 19^{8} + \left(6 a + 11\right)\cdot 19^{9} +O(19^{10})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
| $c1$ | |||
| $1$ | $1$ | $()$ | $4$ |
| $9$ | $2$ | $(1,2)(4,5)$ | $0$ |
| $4$ | $3$ | $(1,2,3)$ | $1$ |
| $4$ | $3$ | $(1,2,3)(4,5,6)$ | $-2$ |
| $9$ | $4$ | $(1,4,2,5)(3,6)$ | $0$ |
| $9$ | $4$ | $(1,5,2,4)(3,6)$ | $0$ |