Properties

Label 4.5e3_29e4.6t10.1c1
Dimension 4
Group $C_3^2:C_4$
Conductor $ 5^{3} \cdot 29^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:C_4$
Conductor:$88410125= 5^{3} \cdot 29^{4} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + x^{4} - x^{3} - 4 x^{2} + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 18 + \left(5 a + 10\right)\cdot 19 + \left(12 a + 3\right)\cdot 19^{2} + \left(2 a + 9\right)\cdot 19^{3} + \left(2 a + 1\right)\cdot 19^{4} + \left(16 a + 14\right)\cdot 19^{5} + \left(3 a + 16\right)\cdot 19^{6} + \left(18 a + 10\right)\cdot 19^{7} + \left(10 a + 6\right)\cdot 19^{8} + \left(15 a + 8\right)\cdot 19^{9} + \left(13 a + 8\right)\cdot 19^{10} + \left(4 a + 16\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 13 + \left(13 a + 2\right)\cdot 19 + \left(6 a + 10\right)\cdot 19^{2} + \left(16 a + 18\right)\cdot 19^{3} + 16 a\cdot 19^{4} + \left(2 a + 9\right)\cdot 19^{5} + \left(15 a + 4\right)\cdot 19^{6} + 6\cdot 19^{7} + \left(8 a + 18\right)\cdot 19^{8} + \left(3 a + 12\right)\cdot 19^{9} + \left(5 a + 6\right)\cdot 19^{10} + \left(14 a + 7\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 11 + 18\cdot 19 + 2\cdot 19^{2} + 15\cdot 19^{3} + 11\cdot 19^{4} + 3\cdot 19^{5} + 18\cdot 19^{6} + 10\cdot 19^{7} + 14\cdot 19^{8} + 12\cdot 19^{9} + 15\cdot 19^{10} + 9\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 12 + 7\cdot 19 + 15\cdot 19^{2} + 5\cdot 19^{3} + 5\cdot 19^{4} + 9\cdot 19^{5} + 3\cdot 19^{6} + 14\cdot 19^{7} + 2\cdot 19^{8} + 2\cdot 19^{9} + 18\cdot 19^{10} + 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 9 + \left(4 a + 18\right)\cdot 19 + \left(4 a + 2\right)\cdot 19^{2} + \left(15 a + 8\right)\cdot 19^{3} + \left(5 a + 4\right)\cdot 19^{4} + \left(a + 3\right)\cdot 19^{5} + \left(8 a + 13\right)\cdot 19^{6} + \left(15 a + 3\right)\cdot 19^{7} + \left(18 a + 15\right)\cdot 19^{8} + \left(6 a + 6\right)\cdot 19^{9} + \left(7 a + 13\right)\cdot 19^{10} + \left(4 a + 2\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 14 + \left(14 a + 17\right)\cdot 19 + \left(14 a + 2\right)\cdot 19^{2} + 3 a\cdot 19^{3} + \left(13 a + 14\right)\cdot 19^{4} + \left(17 a + 17\right)\cdot 19^{5} + 10 a\cdot 19^{6} + \left(3 a + 11\right)\cdot 19^{7} + 18\cdot 19^{8} + \left(12 a + 13\right)\cdot 19^{9} + \left(11 a + 13\right)\cdot 19^{10} + \left(14 a + 18\right)\cdot 19^{11} +O\left(19^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(3,5,6)$
$(1,5,2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$9$$2$$(1,2)(3,5)$$0$
$4$$3$$(3,5,6)$$-2$
$4$$3$$(1,2,4)(3,5,6)$$1$
$9$$4$$(1,5,2,3)(4,6)$$0$
$9$$4$$(1,3,2,5)(4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.