Properties

Label 4.5e3_29e3.8t21.4
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 5^{3} \cdot 29^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$3048625= 5^{3} \cdot 29^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 2 x^{6} - 4 x^{5} + 40 x^{4} - 14 x^{3} - 37 x^{2} - 142 x + 236 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 281 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13 + 169\cdot 281 + 52\cdot 281^{2} + 40\cdot 281^{3} + 109\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 105 + 6\cdot 281 + 158\cdot 281^{2} + 152\cdot 281^{3} + 224\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 155 + 255\cdot 281 + 150\cdot 281^{2} + 247\cdot 281^{3} + 218\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 186 + 142\cdot 281 + 38\cdot 281^{2} + 237\cdot 281^{3} + 118\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 219 + 67\cdot 281 + 204\cdot 281^{2} + 235\cdot 281^{3} + 47\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 226 + 37\cdot 281 + 147\cdot 281^{2} + 133\cdot 281^{3} + 180\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 235 + 107\cdot 281 + 61\cdot 281^{2} + 133\cdot 281^{3} + 95\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 268 + 55\cdot 281 + 30\cdot 281^{2} + 225\cdot 281^{3} + 128\cdot 281^{4} +O\left(281^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(3,7,8,4)$
$(1,4)(2,3)(5,7)(6,8)$
$(1,5)(2,6)(3,8)(4,7)$
$(1,6)(2,5)(3,7)(4,8)$
$(3,8)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,5)(2,6)(3,8)(4,7)$ $-4$
$2$ $2$ $(1,6)(2,5)(3,7)(4,8)$ $0$
$2$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $0$
$2$ $2$ $(1,5)(2,6)$ $0$
$4$ $2$ $(1,4)(2,3)(5,7)(6,8)$ $0$
$4$ $4$ $(1,3,2,7)(4,5,8,6)$ $0$
$4$ $4$ $(1,7,2,3)(4,6,8,5)$ $0$
$4$ $4$ $(1,7,5,4)(2,8,6,3)$ $0$
$4$ $4$ $(1,6,5,2)(3,8)$ $0$
$4$ $4$ $(1,2,5,6)(3,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.