Properties

Label 4.5e3_29e3.8t21.2
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 5^{3} \cdot 29^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$3048625= 5^{3} \cdot 29^{3} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 8 x^{6} - 5 x^{5} + 21 x^{4} + 5 x^{3} + 12 x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 281 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 26 + 24\cdot 281 + 31\cdot 281^{2} + 101\cdot 281^{3} + 44\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 + 39\cdot 281 + 264\cdot 281^{2} + 179\cdot 281^{3} + 229\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 55 + 29\cdot 281 + 277\cdot 281^{2} + 74\cdot 281^{3} + 260\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 62 + 119\cdot 281 + 165\cdot 281^{2} + 165\cdot 281^{3} + 165\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 101 + 253\cdot 281 + 95\cdot 281^{2} + 62\cdot 281^{3} + 61\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 131 + 191\cdot 281 + 272\cdot 281^{2} + 260\cdot 281^{3} + 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 161 + 170\cdot 281 + 114\cdot 281^{2} + 31\cdot 281^{3} + 39\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 277 + 15\cdot 281 + 184\cdot 281^{2} + 247\cdot 281^{3} + 40\cdot 281^{4} +O\left(281^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,7,6)(2,4,5,8)$
$(1,2)(5,7)$
$(1,7)(2,5)(3,6)(4,8)$
$(3,4)(6,8)$
$(3,8,4,6)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,4)(5,7)(6,8)$ $-4$
$2$ $2$ $(1,7)(2,5)(3,6)(4,8)$ $0$
$2$ $2$ $(1,2)(5,7)$ $0$
$2$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$4$ $2$ $(1,6)(2,8)(3,5)(4,7)$ $0$
$4$ $4$ $(1,3,7,6)(2,4,5,8)$ $0$
$4$ $4$ $(1,6,7,3)(2,8,5,4)$ $0$
$4$ $4$ $(1,8,2,6)(3,5,4,7)$ $0$
$4$ $4$ $(3,8,4,6)(5,7)$ $0$
$4$ $4$ $(3,6,4,8)(5,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.