Properties

Label 4.5e3_19e4.8t30.4c1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 5^{3} \cdot 19^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$16290125= 5^{3} \cdot 19^{4} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 2 x^{6} - 5 x^{5} + x^{4} - 5 x^{3} + 2 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 28 + 124\cdot 191 + 162\cdot 191^{2} + 108\cdot 191^{3} + 109\cdot 191^{4} + 48\cdot 191^{5} + 57\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 31 + 68\cdot 191 + 155\cdot 191^{2} + 49\cdot 191^{3} + 106\cdot 191^{4} + 165\cdot 191^{5} + 53\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 37 + 85\cdot 191 + 22\cdot 191^{2} + 70\cdot 191^{3} + 144\cdot 191^{4} + 59\cdot 191^{5} + 143\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 53 + 142\cdot 191 + 4\cdot 191^{2} + 41\cdot 191^{3} + 191^{4} + 189\cdot 191^{5} + 105\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 116 + 161\cdot 191 + 38\cdot 191^{2} + 62\cdot 191^{3} + 164\cdot 191^{4} + 62\cdot 191^{5} + 90\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 150 + 138\cdot 191 + 145\cdot 191^{2} + 53\cdot 191^{3} + 26\cdot 191^{4} + 168\cdot 191^{5} + 127\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 173 + 123\cdot 191 + 112\cdot 191^{2} + 113\cdot 191^{3} + 110\cdot 191^{4} + 8\cdot 191^{5} + 13\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 177 + 110\cdot 191 + 121\cdot 191^{2} + 73\cdot 191^{3} + 101\cdot 191^{4} + 61\cdot 191^{5} + 172\cdot 191^{6} +O\left(191^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,3)(4,7)$
$(4,7)(6,8)$
$(1,4,8,3)(2,5,7,6)$
$(1,5)(6,8)$
$(1,6,5,8)(2,4,3,7)$
$(2,7,3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,3)(4,7)(6,8)$$-4$
$2$$2$$(1,5)(6,8)$$0$
$4$$2$$(1,8)(2,7)(3,4)(5,6)$$0$
$4$$2$$(1,5)(2,3)$$0$
$8$$2$$(2,4)(3,7)(6,8)$$0$
$4$$4$$(1,6,5,8)(2,4,3,7)$$0$
$4$$4$$(2,7,3,4)$$-2$
$4$$4$$(1,5)(2,7,3,4)(6,8)$$2$
$8$$4$$(1,4,8,3)(2,5,7,6)$$0$
$8$$4$$(1,3,8,4)(2,6,7,5)$$0$
$8$$4$$(1,2,5,3)(4,8)(6,7)$$0$
$8$$4$$(1,3,5,2)(4,8)(6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.