Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 191 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 28 + 124\cdot 191 + 162\cdot 191^{2} + 108\cdot 191^{3} + 109\cdot 191^{4} + 48\cdot 191^{5} + 57\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 31 + 68\cdot 191 + 155\cdot 191^{2} + 49\cdot 191^{3} + 106\cdot 191^{4} + 165\cdot 191^{5} + 53\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 37 + 85\cdot 191 + 22\cdot 191^{2} + 70\cdot 191^{3} + 144\cdot 191^{4} + 59\cdot 191^{5} + 143\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 53 + 142\cdot 191 + 4\cdot 191^{2} + 41\cdot 191^{3} + 191^{4} + 189\cdot 191^{5} + 105\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 116 + 161\cdot 191 + 38\cdot 191^{2} + 62\cdot 191^{3} + 164\cdot 191^{4} + 62\cdot 191^{5} + 90\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 150 + 138\cdot 191 + 145\cdot 191^{2} + 53\cdot 191^{3} + 26\cdot 191^{4} + 168\cdot 191^{5} + 127\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 173 + 123\cdot 191 + 112\cdot 191^{2} + 113\cdot 191^{3} + 110\cdot 191^{4} + 8\cdot 191^{5} + 13\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 177 + 110\cdot 191 + 121\cdot 191^{2} + 73\cdot 191^{3} + 101\cdot 191^{4} + 61\cdot 191^{5} + 172\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,3)(4,7)$ |
| $(4,7)(6,8)$ |
| $(1,4,8,3)(2,5,7,6)$ |
| $(1,5)(6,8)$ |
| $(1,6,5,8)(2,4,3,7)$ |
| $(2,7,3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,5)(2,3)(4,7)(6,8)$ | $-4$ |
| $2$ | $2$ | $(1,5)(6,8)$ | $0$ |
| $4$ | $2$ | $(1,8)(2,7)(3,4)(5,6)$ | $0$ |
| $4$ | $2$ | $(1,5)(2,3)$ | $0$ |
| $8$ | $2$ | $(2,4)(3,7)(6,8)$ | $0$ |
| $4$ | $4$ | $(1,6,5,8)(2,4,3,7)$ | $0$ |
| $4$ | $4$ | $(2,7,3,4)$ | $-2$ |
| $4$ | $4$ | $(1,5)(2,7,3,4)(6,8)$ | $2$ |
| $8$ | $4$ | $(1,4,8,3)(2,5,7,6)$ | $0$ |
| $8$ | $4$ | $(1,3,8,4)(2,6,7,5)$ | $0$ |
| $8$ | $4$ | $(1,2,5,3)(4,8)(6,7)$ | $0$ |
| $8$ | $4$ | $(1,3,5,2)(4,8)(6,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.