Properties

Label 4.5e3_19e4.8t30.3c1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 5^{3} \cdot 19^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$16290125= 5^{3} \cdot 19^{4} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 6 x^{5} - 11 x^{4} + 6 x^{3} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 2 + 52\cdot 191 + 59\cdot 191^{2} + 187\cdot 191^{3} + 107\cdot 191^{4} + 74\cdot 191^{5} + 114\cdot 191^{6} + 40\cdot 191^{7} +O\left(191^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 10 + 158\cdot 191 + 6\cdot 191^{2} + 20\cdot 191^{3} + 91\cdot 191^{4} + 32\cdot 191^{5} + 15\cdot 191^{6} + 131\cdot 191^{7} +O\left(191^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 76 + 7\cdot 191 + 108\cdot 191^{2} + 113\cdot 191^{3} + 82\cdot 191^{4} + 121\cdot 191^{5} + 142\cdot 191^{6} + 12\cdot 191^{7} +O\left(191^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 93 + 191 + 21\cdot 191^{2} + 36\cdot 191^{3} + 40\cdot 191^{4} + 171\cdot 191^{5} + 106\cdot 191^{6} + 137\cdot 191^{7} +O\left(191^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 96 + 82\cdot 191 + 84\cdot 191^{2} + 51\cdot 191^{3} + 34\cdot 191^{4} + 67\cdot 191^{5} + 114\cdot 191^{6} + 65\cdot 191^{7} +O\left(191^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 140 + 162\cdot 191 + 125\cdot 191^{2} + 24\cdot 191^{3} + 164\cdot 191^{4} + 141\cdot 191^{5} + 185\cdot 191^{6} + 107\cdot 191^{7} +O\left(191^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 172 + 51\cdot 191 + 127\cdot 191^{2} + 39\cdot 191^{3} + 168\cdot 191^{4} + 166\cdot 191^{5} + 12\cdot 191^{6} + 138\cdot 191^{7} +O\left(191^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 176 + 56\cdot 191 + 40\cdot 191^{2} + 100\cdot 191^{3} + 75\cdot 191^{4} + 179\cdot 191^{5} + 71\cdot 191^{6} + 130\cdot 191^{7} +O\left(191^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,5,4)(2,8)(6,7)$
$(1,5)(2,7)$
$(2,7)(6,8)$
$(1,3,2,8)(4,7,6,5)$
$(3,4)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,7)(3,4)(6,8)$$-4$
$2$$2$$(3,4)(6,8)$$0$
$4$$2$$(1,5)(3,4)$$0$
$4$$2$$(1,2)(3,8)(4,6)(5,7)$$0$
$8$$2$$(1,5)(3,8)(4,6)$$0$
$4$$4$$(3,6,4,8)$$-2$
$4$$4$$(1,5)(2,7)(3,8,4,6)$$2$
$4$$4$$(1,7,5,2)(3,6,4,8)$$0$
$8$$4$$(1,3,5,4)(2,8)(6,7)$$0$
$8$$4$$(1,4,5,3)(2,8)(6,7)$$0$
$8$$4$$(1,3,2,8)(4,7,6,5)$$0$
$8$$4$$(1,8,2,3)(4,5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.