Properties

Label 4.5e3_19e4.8t21.2c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 5^{3} \cdot 19^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$16290125= 5^{3} \cdot 19^{4} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 3 x^{6} + 9 x^{5} - 22 x^{4} - 7 x^{3} + 77 x^{2} - 46 x + 17 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 62\cdot 191 + 145\cdot 191^{2} + 36\cdot 191^{3} + 88\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 98\cdot 191 + 170\cdot 191^{2} + 167\cdot 191^{3} + 190\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 + 125\cdot 191 + 134\cdot 191^{2} + 97\cdot 191^{3} + 71\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 41 + 65\cdot 191 + 165\cdot 191^{2} + 20\cdot 191^{3} + 42\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 70 + 155\cdot 191 + 172\cdot 191^{2} + 50\cdot 191^{3} + 185\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 86 + 83\cdot 191 + 182\cdot 191^{2} + 166\cdot 191^{3} + 143\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 143 + 183\cdot 191 + 7\cdot 191^{2} + 26\cdot 191^{3} + 155\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 188 + 181\cdot 191 + 166\cdot 191^{2} + 5\cdot 191^{3} + 78\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,5,8,6)(2,4,7,3)$
$(3,6)(4,5)$
$(1,8)(2,7)(3,4)(5,6)$
$(1,5,2,4)(3,7,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,6)(4,5)(7,8)$$-4$
$2$$2$$(1,8)(2,7)(3,4)(5,6)$$0$
$2$$2$$(3,6)(4,5)$$0$
$2$$2$$(1,8)(2,7)(3,5)(4,6)$$0$
$4$$2$$(1,5)(2,4)(3,8)(6,7)$$0$
$4$$4$$(1,5,2,4)(3,7,6,8)$$0$
$4$$4$$(1,6,8,5)(2,3,7,4)$$0$
$4$$4$$(1,5,8,6)(2,4,7,3)$$0$
$4$$4$$(3,5,6,4)(7,8)$$0$
$4$$4$$(3,4,6,5)(7,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.