Properties

Label 4.5e3_19e4.8t21.1
Dimension 4
Group $C_2^3: C_4$
Conductor $ 5^{3} \cdot 19^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3: C_4$
Conductor:$16290125= 5^{3} \cdot 19^{4} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 13 x^{6} + 50 x^{5} - 29 x^{4} + 110 x^{3} - 582 x^{2} + 796 x - 319 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 41 + 52\cdot 191 + 86\cdot 191^{2} + 124\cdot 191^{3} + 18\cdot 191^{4} + 132\cdot 191^{5} + 183\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 43 + 8\cdot 191 + 110\cdot 191^{2} + 33\cdot 191^{3} + 101\cdot 191^{4} + 75\cdot 191^{5} + 27\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 76 + 79\cdot 191 + 103\cdot 191^{2} + 127\cdot 191^{3} + 130\cdot 191^{4} + 164\cdot 191^{5} + 91\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 79 + 94\cdot 191 + 48\cdot 191^{2} + 65\cdot 191^{3} + 168\cdot 191^{4} + 29\cdot 191^{5} + 108\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 87 + 161\cdot 191 + 109\cdot 191^{3} + 60\cdot 191^{4} + 96\cdot 191^{5} + 98\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 132 + 115\cdot 191 + 135\cdot 191^{2} + 113\cdot 191^{3} + 136\cdot 191^{4} + 65\cdot 191^{5} + 43\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 135 + 88\cdot 191 + 186\cdot 191^{2} + 179\cdot 191^{3} + 111\cdot 191^{4} + 50\cdot 191^{5} + 13\cdot 191^{6} +O\left(191^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 174 + 163\cdot 191 + 92\cdot 191^{2} + 10\cdot 191^{3} + 36\cdot 191^{4} + 149\cdot 191^{5} + 6\cdot 191^{6} +O\left(191^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(5,6)$
$(4,8)(5,6)$
$(1,4,7,6)(2,8,3,5)$
$(3,7)(4,8)$
$(1,3)(2,7)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $-4$
$2$ $2$ $(1,3)(2,7)(4,6)(5,8)$ $0$
$2$ $2$ $(1,7)(2,3)(4,6)(5,8)$ $0$
$2$ $2$ $(4,8)(5,6)$ $0$
$4$ $2$ $(3,7)(4,8)$ $0$
$4$ $4$ $(1,4,7,6)(2,8,3,5)$ $0$
$4$ $4$ $(1,6,7,4)(2,5,3,8)$ $0$
$4$ $4$ $(1,3,2,7)(4,5,8,6)$ $0$
$4$ $4$ $(1,4,3,6)(2,8,7,5)$ $0$
$4$ $4$ $(1,6,3,4)(2,5,7,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.