Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 191 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 41 + 52\cdot 191 + 86\cdot 191^{2} + 124\cdot 191^{3} + 18\cdot 191^{4} + 132\cdot 191^{5} + 183\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 43 + 8\cdot 191 + 110\cdot 191^{2} + 33\cdot 191^{3} + 101\cdot 191^{4} + 75\cdot 191^{5} + 27\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 76 + 79\cdot 191 + 103\cdot 191^{2} + 127\cdot 191^{3} + 130\cdot 191^{4} + 164\cdot 191^{5} + 91\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 79 + 94\cdot 191 + 48\cdot 191^{2} + 65\cdot 191^{3} + 168\cdot 191^{4} + 29\cdot 191^{5} + 108\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 87 + 161\cdot 191 + 109\cdot 191^{3} + 60\cdot 191^{4} + 96\cdot 191^{5} + 98\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 132 + 115\cdot 191 + 135\cdot 191^{2} + 113\cdot 191^{3} + 136\cdot 191^{4} + 65\cdot 191^{5} + 43\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 135 + 88\cdot 191 + 186\cdot 191^{2} + 179\cdot 191^{3} + 111\cdot 191^{4} + 50\cdot 191^{5} + 13\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 174 + 163\cdot 191 + 92\cdot 191^{2} + 10\cdot 191^{3} + 36\cdot 191^{4} + 149\cdot 191^{5} + 6\cdot 191^{6} +O\left(191^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(5,6)$ |
| $(4,8)(5,6)$ |
| $(1,4,7,6)(2,8,3,5)$ |
| $(3,7)(4,8)$ |
| $(1,3)(2,7)(4,6)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,2)(3,7)(4,8)(5,6)$ |
$-4$ |
| $2$ |
$2$ |
$(1,3)(2,7)(4,6)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,3)(4,6)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(4,8)(5,6)$ |
$0$ |
| $4$ |
$2$ |
$(3,7)(4,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,7,6)(2,8,3,5)$ |
$0$ |
| $4$ |
$4$ |
$(1,6,7,4)(2,5,3,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,3,2,7)(4,5,8,6)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,3,6)(2,8,7,5)$ |
$0$ |
| $4$ |
$4$ |
$(1,6,3,4)(2,5,7,8)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.