Properties

Label 4.5e3_19e2_29e2.8t29.2c1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 5^{3} \cdot 19^{2} \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$37950125= 5^{3} \cdot 19^{2} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - x^{6} + 22 x^{5} - 17 x^{4} - 106 x^{3} + 6 x^{2} + 236 x + 161 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 18\cdot 23 + 17\cdot 23^{2} + 14\cdot 23^{3} + 8\cdot 23^{4} + 11\cdot 23^{5} + 6\cdot 23^{6} + 12\cdot 23^{7} + 22\cdot 23^{9} + 15\cdot 23^{10} + 7\cdot 23^{11} + 12\cdot 23^{12} + 11\cdot 23^{13} + 13\cdot 23^{14} + 8\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 1 + 13\cdot 23 + 17\cdot 23^{4} + 7\cdot 23^{5} + 20\cdot 23^{6} + 2\cdot 23^{7} + 22\cdot 23^{8} + 2\cdot 23^{9} + 4\cdot 23^{10} + 17\cdot 23^{11} + 2\cdot 23^{12} + 14\cdot 23^{13} + 2\cdot 23^{14} + 10\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 13 + \left(8 a + 15\right)\cdot 23 + \left(15 a + 8\right)\cdot 23^{2} + \left(19 a + 20\right)\cdot 23^{3} + \left(8 a + 4\right)\cdot 23^{4} + \left(a + 17\right)\cdot 23^{5} + \left(10 a + 9\right)\cdot 23^{6} + \left(19 a + 5\right)\cdot 23^{7} + \left(10 a + 11\right)\cdot 23^{8} + 11 a\cdot 23^{9} + \left(18 a + 8\right)\cdot 23^{10} + \left(18 a + 4\right)\cdot 23^{11} + \left(5 a + 12\right)\cdot 23^{12} + \left(22 a + 11\right)\cdot 23^{13} + \left(15 a + 12\right)\cdot 23^{14} + 5 a\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 8 + 3\cdot 23 + 3\cdot 23^{2} + 15\cdot 23^{4} + 18\cdot 23^{5} + 22\cdot 23^{6} + 9\cdot 23^{7} + 11\cdot 23^{8} + 12\cdot 23^{9} + 18\cdot 23^{10} + 18\cdot 23^{11} + 8\cdot 23^{12} + 23^{13} + 3\cdot 23^{14} + 15\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 21 + \left(14 a + 10\right)\cdot 23 + \left(12 a + 4\right)\cdot 23^{2} + 20\cdot 23^{3} + \left(17 a + 12\right)\cdot 23^{4} + \left(15 a + 5\right)\cdot 23^{5} + \left(19 a + 8\right)\cdot 23^{6} + \left(17 a + 19\right)\cdot 23^{7} + \left(17 a + 2\right)\cdot 23^{8} + \left(12 a + 7\right)\cdot 23^{9} + \left(9 a + 13\right)\cdot 23^{10} + \left(17 a + 2\right)\cdot 23^{11} + \left(8 a + 9\right)\cdot 23^{12} + \left(19 a + 1\right)\cdot 23^{13} + \left(7 a + 19\right)\cdot 23^{14} + \left(7 a + 21\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 21 + 13\cdot 23 + 11\cdot 23^{2} + 6\cdot 23^{3} + 7\cdot 23^{4} + 10\cdot 23^{6} + 18\cdot 23^{7} + 9\cdot 23^{8} + 19\cdot 23^{9} + 23^{10} + 13\cdot 23^{11} + 9\cdot 23^{12} + 16\cdot 23^{13} + 3\cdot 23^{14} + 11\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 7 }$ $=$ $ 8 a + 20 + \left(14 a + 17\right)\cdot 23 + \left(7 a + 7\right)\cdot 23^{2} + \left(3 a + 21\right)\cdot 23^{3} + \left(14 a + 2\right)\cdot 23^{4} + \left(21 a + 11\right)\cdot 23^{5} + \left(12 a + 5\right)\cdot 23^{6} + \left(3 a + 11\right)\cdot 23^{7} + \left(12 a + 13\right)\cdot 23^{8} + \left(11 a + 12\right)\cdot 23^{9} + \left(4 a + 10\right)\cdot 23^{10} + 4 a\cdot 23^{11} + \left(17 a + 5\right)\cdot 23^{12} + 4\cdot 23^{13} + \left(7 a + 22\right)\cdot 23^{14} + \left(17 a + 18\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 8 }$ $=$ $ 5 a + 11 + \left(8 a + 22\right)\cdot 23 + \left(10 a + 14\right)\cdot 23^{2} + \left(22 a + 8\right)\cdot 23^{3} + 5 a\cdot 23^{4} + \left(7 a + 20\right)\cdot 23^{5} + \left(3 a + 8\right)\cdot 23^{6} + \left(5 a + 12\right)\cdot 23^{7} + \left(5 a + 20\right)\cdot 23^{8} + \left(10 a + 14\right)\cdot 23^{9} + \left(13 a + 19\right)\cdot 23^{10} + \left(5 a + 4\right)\cdot 23^{11} + \left(14 a + 9\right)\cdot 23^{12} + \left(3 a + 8\right)\cdot 23^{13} + \left(15 a + 15\right)\cdot 23^{14} + \left(15 a + 5\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,8)(5,7)$
$(1,5)(2,8)(3,4)(6,7)$
$(1,6)(2,4)$
$(2,4)(5,7)$
$(1,6)(3,5,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,4)(3,8)(5,7)$$-4$
$2$$2$$(3,8)(5,7)$$0$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$2$$(1,2)(3,7)(4,6)(5,8)$$0$
$4$$2$$(1,5)(2,8)(3,4)(6,7)$$0$
$4$$2$$(2,4)(5,7)$$0$
$4$$2$$(1,6)(2,4)(3,5)(7,8)$$-2$
$4$$2$$(1,5)(2,3)(4,8)(6,7)$$0$
$4$$2$$(3,5)(7,8)$$2$
$4$$4$$(1,5,6,7)(2,8,4,3)$$0$
$4$$4$$(1,5,6,7)(2,3,4,8)$$0$
$4$$4$$(1,2,6,4)(3,5,8,7)$$0$
$8$$4$$(1,6)(3,5,8,7)$$0$
$8$$4$$(1,7,4,3)(2,8,6,5)$$0$
$8$$4$$(1,7,2,3)(4,8,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.