Properties

Label 4.5e3_19e2_1091e2.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{3} \cdot 19^{2} \cdot 1091^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$53711430125= 5^{3} \cdot 19^{2} \cdot 1091^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 7 x^{4} + 6 x^{3} + 10 x^{2} - 9 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 36 a + 66 + \left(63 a + 19\right)\cdot 79 + \left(42 a + 42\right)\cdot 79^{2} + \left(8 a + 37\right)\cdot 79^{3} + \left(40 a + 56\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 43 a + 23 + \left(15 a + 47\right)\cdot 79 + \left(36 a + 21\right)\cdot 79^{2} + \left(70 a + 3\right)\cdot 79^{3} + \left(38 a + 9\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 + 75\cdot 79 + 28\cdot 79^{2} + 76\cdot 79^{3} + 49\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 a + 44 + \left(29 a + 18\right)\cdot 79 + \left(17 a + 3\right)\cdot 79^{2} + \left(a + 72\right)\cdot 79^{3} + \left(12 a + 4\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 51 a + 72 + \left(49 a + 19\right)\cdot 79 + \left(61 a + 70\right)\cdot 79^{2} + \left(77 a + 55\right)\cdot 79^{3} + \left(66 a + 15\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 + 56\cdot 79 + 70\cdot 79^{2} + 70\cdot 79^{3} + 21\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)$
$(1,3)(2,4)(5,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,4)(5,6)$ $-2$
$6$ $2$ $(2,6)$ $0$
$9$ $2$ $(2,6)(4,5)$ $0$
$4$ $3$ $(1,2,6)$ $-2$
$4$ $3$ $(1,2,6)(3,4,5)$ $1$
$18$ $4$ $(1,3)(2,5,6,4)$ $0$
$12$ $6$ $(1,4,2,5,6,3)$ $1$
$12$ $6$ $(2,6)(3,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.