Properties

Label 4.5e3_17e3.5t3.1c1
Dimension 4
Group $F_5$
Conductor $ 5^{3} \cdot 17^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$614125= 5^{3} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 2 x^{3} + 3 x^{2} - 3 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even
Determinant: 1.5_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 8 + \left(8 a + 17\right)\cdot 23 + \left(14 a + 16\right)\cdot 23^{2} + \left(13 a + 5\right)\cdot 23^{3} + \left(17 a + 15\right)\cdot 23^{4} + \left(3 a + 16\right)\cdot 23^{5} + \left(8 a + 2\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 13 + \left(21 a + 19\right)\cdot 23 + \left(9 a + 11\right)\cdot 23^{2} + \left(20 a + 11\right)\cdot 23^{3} + \left(17 a + 2\right)\cdot 23^{4} + \left(9 a + 15\right)\cdot 23^{5} + \left(12 a + 14\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 18 + 21\cdot 23 + 15\cdot 23^{2} + 13\cdot 23^{3} + 19\cdot 23^{4} + 13\cdot 23^{5} + 6\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 15 + \left(14 a + 19\right)\cdot 23 + \left(8 a + 13\right)\cdot 23^{2} + \left(9 a + 18\right)\cdot 23^{3} + \left(5 a + 13\right)\cdot 23^{4} + \left(19 a + 6\right)\cdot 23^{5} + \left(14 a + 15\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 17 + \left(a + 13\right)\cdot 23 + \left(13 a + 10\right)\cdot 23^{2} + \left(2 a + 19\right)\cdot 23^{3} + \left(5 a + 17\right)\cdot 23^{4} + \left(13 a + 16\right)\cdot 23^{5} + \left(10 a + 6\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,5)(3,4)$
$(1,4,5,3)$
$(1,4,2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$5$$2$$(1,5)(3,4)$$0$
$5$$4$$(1,4,5,3)$$0$
$5$$4$$(1,3,5,4)$$0$
$4$$5$$(1,4,2,3,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.