Properties

Label 4.5e3_1619e2.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{3} \cdot 1619^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$327645125= 5^{3} \cdot 1619^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 2 x^{4} + 5 x^{3} - x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 25 + 24\cdot 41 + 19\cdot 41^{2} + 4\cdot 41^{3} + 9\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 a + 11 + \left(13 a + 38\right)\cdot 41 + \left(33 a + 16\right)\cdot 41^{2} + \left(9 a + 1\right)\cdot 41^{3} + \left(6 a + 9\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 + 28\cdot 41 + 2\cdot 41^{2} + 41^{3} + 14\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 39 + \left(27 a + 14\right)\cdot 41 + \left(7 a + 21\right)\cdot 41^{2} + \left(31 a + 38\right)\cdot 41^{3} + \left(34 a + 17\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 8 + \left(21 a + 24\right)\cdot 41 + \left(22 a + 28\right)\cdot 41^{2} + \left(8 a + 16\right)\cdot 41^{3} + \left(29 a + 17\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 9 + \left(19 a + 33\right)\cdot 41 + \left(18 a + 33\right)\cdot 41^{2} + \left(32 a + 19\right)\cdot 41^{3} + \left(11 a + 14\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,5)$
$(1,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $-2$
$6$ $2$ $(3,4)$ $0$
$9$ $2$ $(3,4)(5,6)$ $0$
$4$ $3$ $(1,5,6)$ $-2$
$4$ $3$ $(1,5,6)(2,3,4)$ $1$
$18$ $4$ $(1,2)(3,6,4,5)$ $0$
$12$ $6$ $(1,3,5,4,6,2)$ $1$
$12$ $6$ $(1,5,6)(3,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.