Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 a + \left(9 a + 12\right)\cdot 19 + \left(3 a + 15\right)\cdot 19^{2} + \left(3 a + 14\right)\cdot 19^{3} + \left(12 a + 6\right)\cdot 19^{4} + \left(4 a + 9\right)\cdot 19^{5} + \left(6 a + 17\right)\cdot 19^{6} + \left(10 a + 3\right)\cdot 19^{7} + \left(5 a + 3\right)\cdot 19^{8} + 13\cdot 19^{9} + \left(2 a + 3\right)\cdot 19^{10} + 16 a\cdot 19^{11} + 9\cdot 19^{12} + \left(7 a + 13\right)\cdot 19^{13} + \left(8 a + 12\right)\cdot 19^{14} + \left(15 a + 8\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 17 a + 2 + 9 a\cdot 19 + \left(15 a + 10\right)\cdot 19^{2} + \left(15 a + 14\right)\cdot 19^{3} + \left(6 a + 15\right)\cdot 19^{4} + \left(14 a + 1\right)\cdot 19^{5} + 12 a\cdot 19^{6} + \left(8 a + 8\right)\cdot 19^{7} + \left(13 a + 17\right)\cdot 19^{8} + \left(18 a + 7\right)\cdot 19^{9} + \left(16 a + 5\right)\cdot 19^{10} + \left(2 a + 14\right)\cdot 19^{11} + \left(18 a + 12\right)\cdot 19^{12} + 11 a\cdot 19^{13} + \left(10 a + 14\right)\cdot 19^{14} + \left(3 a + 15\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 13 + 4\cdot 19 + 2\cdot 19^{2} + 13\cdot 19^{3} + 7\cdot 19^{4} + 13\cdot 19^{5} + 14\cdot 19^{6} + 13\cdot 19^{7} + 8\cdot 19^{8} + 12\cdot 19^{9} + 14\cdot 19^{10} + 16\cdot 19^{11} + 10\cdot 19^{12} + 10\cdot 19^{13} + 13\cdot 19^{14} + 8\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 12 + 11\cdot 19 + 15\cdot 19^{2} + 2\cdot 19^{3} + 6\cdot 19^{5} + 15\cdot 19^{6} + 17\cdot 19^{7} + 6\cdot 19^{8} + 8\cdot 19^{9} + 17\cdot 19^{10} + 6\cdot 19^{11} + 17\cdot 19^{12} + 16\cdot 19^{13} + 12\cdot 19^{14} + 11\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 12 a + \left(18 a + 11\right)\cdot 19 + \left(6 a + 12\right)\cdot 19^{2} + \left(14 a + 11\right)\cdot 19^{3} + \left(16 a + 2\right)\cdot 19^{4} + \left(8 a + 17\right)\cdot 19^{5} + \left(12 a + 2\right)\cdot 19^{6} + \left(3 a + 11\right)\cdot 19^{7} + \left(14 a + 14\right)\cdot 19^{8} + \left(18 a + 14\right)\cdot 19^{9} + \left(12 a + 10\right)\cdot 19^{10} + \left(18 a + 6\right)\cdot 19^{11} + 5 a\cdot 19^{12} + \left(6 a + 17\right)\cdot 19^{13} + \left(a + 13\right)\cdot 19^{14} + \left(11 a + 10\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 7 a + 12 + 17\cdot 19 + 12 a\cdot 19^{2} + 4 a\cdot 19^{3} + \left(2 a + 5\right)\cdot 19^{4} + \left(10 a + 9\right)\cdot 19^{5} + \left(6 a + 6\right)\cdot 19^{6} + \left(15 a + 2\right)\cdot 19^{7} + \left(4 a + 6\right)\cdot 19^{8} + \left(6 a + 5\right)\cdot 19^{10} + 12\cdot 19^{11} + \left(13 a + 6\right)\cdot 19^{12} + \left(12 a + 17\right)\cdot 19^{13} + \left(17 a + 8\right)\cdot 19^{14} + \left(7 a + 1\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(4,5,6)$ |
| $(1,2,3)$ |
| $(1,4,2,5)(3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $9$ |
$2$ |
$(1,2)(4,5)$ |
$0$ |
| $4$ |
$3$ |
$(1,2,3)$ |
$-2$ |
| $4$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$1$ |
| $9$ |
$4$ |
$(1,4,2,5)(3,6)$ |
$0$ |
| $9$ |
$4$ |
$(1,5,2,4)(3,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.