Properties

Label 4.5e3_1511e2.12t34.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{3} \cdot 1511^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$285390125= 5^{3} \cdot 1511^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 15 x^{4} - 17 x^{3} + 52 x^{2} - 21 x + 380 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 2 + \left(12 a + 29\right)\cdot 31 + \left(17 a + 28\right)\cdot 31^{2} + \left(4 a + 13\right)\cdot 31^{3} + \left(13 a + 25\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 a + 12 + \left(5 a + 14\right)\cdot 31 + \left(14 a + 13\right)\cdot 31^{2} + \left(14 a + 14\right)\cdot 31^{3} + \left(19 a + 27\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 20 + \left(18 a + 13\right)\cdot 31 + \left(13 a + 20\right)\cdot 31^{2} + \left(26 a + 5\right)\cdot 31^{3} + \left(17 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 8 + \left(25 a + 28\right)\cdot 31 + \left(16 a + 4\right)\cdot 31^{2} + \left(16 a + 29\right)\cdot 31^{3} + \left(11 a + 20\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 + 19\cdot 31 + 12\cdot 31^{2} + 11\cdot 31^{3} + 20\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 + 19\cdot 31 + 12\cdot 31^{2} + 18\cdot 31^{3} + 13\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $0$
$6$ $2$ $(1,3)$ $-2$
$9$ $2$ $(1,3)(2,4)$ $0$
$4$ $3$ $(1,3,5)(2,4,6)$ $-2$
$4$ $3$ $(1,3,5)$ $1$
$18$ $4$ $(1,4,3,2)(5,6)$ $0$
$12$ $6$ $(1,4,3,6,5,2)$ $0$
$12$ $6$ $(1,3)(2,4,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.