Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 929 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 147 + 421\cdot 929 + 745\cdot 929^{2} + 363\cdot 929^{3} + 775\cdot 929^{4} + 578\cdot 929^{5} + 889\cdot 929^{6} + 605\cdot 929^{7} +O\left(929^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 232 + 875\cdot 929 + 636\cdot 929^{2} + 831\cdot 929^{3} + 301\cdot 929^{4} + 887\cdot 929^{5} + 404\cdot 929^{6} + 414\cdot 929^{7} +O\left(929^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 308 + 603\cdot 929 + 833\cdot 929^{2} + 312\cdot 929^{3} + 402\cdot 929^{4} + 207\cdot 929^{5} + 188\cdot 929^{6} + 816\cdot 929^{7} +O\left(929^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 312 + 347\cdot 929 + 439\cdot 929^{2} + 709\cdot 929^{3} + 748\cdot 929^{4} + 789\cdot 929^{5} + 211\cdot 929^{6} + 433\cdot 929^{7} +O\left(929^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 439 + 628\cdot 929 + 706\cdot 929^{2} + 896\cdot 929^{3} + 842\cdot 929^{4} + 425\cdot 929^{5} + 207\cdot 929^{6} + 749\cdot 929^{7} +O\left(929^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 625 + 202\cdot 929 + 67\cdot 929^{2} + 507\cdot 929^{3} + 643\cdot 929^{4} + 142\cdot 929^{5} + 499\cdot 929^{6} + 717\cdot 929^{7} +O\left(929^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 767 + 420\cdot 929 + 104\cdot 929^{2} + 686\cdot 929^{3} + 80\cdot 929^{4} + 349\cdot 929^{5} + 694\cdot 929^{6} + 846\cdot 929^{7} +O\left(929^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 889 + 216\cdot 929 + 182\cdot 929^{2} + 337\cdot 929^{3} + 849\cdot 929^{4} + 334\cdot 929^{5} + 620\cdot 929^{6} + 61\cdot 929^{7} +O\left(929^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(4,6)$ |
| $(1,5,2,8)(3,6,7,4)$ |
| $(1,2)(5,8)$ |
| $(1,3,2,7)(5,8)$ |
| $(3,7)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,2)(3,7)(4,6)(5,8)$ | $-4$ |
| $2$ | $2$ | $(1,3)(2,7)(4,5)(6,8)$ | $0$ |
| $2$ | $2$ | $(4,6)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,3)(4,5)(6,8)$ | $0$ |
| $4$ | $2$ | $(1,2)(4,6)$ | $0$ |
| $4$ | $2$ | $(1,3)(2,7)(4,6)(5,8)$ | $-2$ |
| $4$ | $2$ | $(1,6)(2,4)(3,5)(7,8)$ | $0$ |
| $4$ | $2$ | $(1,5)(2,8)(3,4)(6,7)$ | $0$ |
| $4$ | $2$ | $(4,8)(5,6)$ | $2$ |
| $4$ | $4$ | $(1,5,2,8)(3,6,7,4)$ | $0$ |
| $4$ | $4$ | $(1,8,2,5)(3,6,7,4)$ | $0$ |
| $4$ | $4$ | $(1,3,2,7)(4,8,6,5)$ | $0$ |
| $8$ | $4$ | $(1,8,3,6)(2,5,7,4)$ | $0$ |
| $8$ | $4$ | $(3,7)(4,8,6,5)$ | $0$ |
| $8$ | $4$ | $(1,8,7,6)(2,5,3,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.