Properties

Label 4.5e3_11e2_19e2.8t21.5
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 5^{3} \cdot 11^{2} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$5460125= 5^{3} \cdot 11^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 4 x^{6} - 10 x^{5} + 19 x^{4} - 30 x^{3} + 60 x^{2} - 40 x + 80 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 11 + 59\cdot 191 + 183\cdot 191^{2} + 173\cdot 191^{3} + 137\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 75\cdot 191 + 91\cdot 191^{2} + 84\cdot 191^{3} + 50\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 + 88\cdot 191 + 68\cdot 191^{2} + 168\cdot 191^{3} + 145\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 51 + 93\cdot 191 + 9\cdot 191^{2} + 78\cdot 191^{3} + 32\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 56 + 189\cdot 191 + 112\cdot 191^{2} + 174\cdot 191^{3} + 49\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 62 + 94\cdot 191 + 38\cdot 191^{2} + 7\cdot 191^{3} + 5\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 166 + 174\cdot 191 + 8\cdot 191^{2} + 23\cdot 191^{3} + 16\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 181 + 180\cdot 191 + 59\cdot 191^{2} + 54\cdot 191^{3} + 135\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,4,8)(2,6,5,3)$
$(1,4)(2,7,5,8)$
$(2,5)(7,8)$
$(1,4)(2,5)(3,6)(7,8)$
$(1,3)(2,7)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,5)(3,6)(7,8)$ $-4$
$2$ $2$ $(1,3)(2,7)(4,6)(5,8)$ $0$
$2$ $2$ $(1,3)(2,8)(4,6)(5,7)$ $0$
$2$ $2$ $(1,4)(3,6)$ $0$
$4$ $2$ $(1,2)(3,7)(4,5)(6,8)$ $0$
$4$ $4$ $(1,7,4,8)(2,6,5,3)$ $0$
$4$ $4$ $(1,5,3,7)(2,6,8,4)$ $0$
$4$ $4$ $(1,7,3,5)(2,4,8,6)$ $0$
$4$ $4$ $(1,3,4,6)(2,5)$ $0$
$4$ $4$ $(1,6,4,3)(2,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.