Properties

Label 4.5e3_11e2_19e2.8t21.1c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 5^{3} \cdot 11^{2} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$5460125= 5^{3} \cdot 11^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 3 x^{6} - 7 x^{5} + 8 x^{4} - 7 x^{3} + 51 x^{2} - 5 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 94\cdot 191 + 36\cdot 191^{2} + 190\cdot 191^{3} + 73\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 + 67\cdot 191 + 145\cdot 191^{2} + 173\cdot 191^{3} + 61\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 62 + 57\cdot 191 + 79\cdot 191^{2} + 29\cdot 191^{3} + 124\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 105 + 169\cdot 191 + 174\cdot 191^{2} + 144\cdot 191^{3} + 16\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 107 + 78\cdot 191 + 13\cdot 191^{2} + 146\cdot 191^{3} + 125\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 109 + 76\cdot 191 + 114\cdot 191^{2} + 61\cdot 191^{3} + 115\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 167 + 75\cdot 191 + 91\cdot 191^{2} + 135\cdot 191^{3} + 120\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 174 + 144\cdot 191 + 108\cdot 191^{2} + 73\cdot 191^{3} + 125\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,8)(3,6)(4,5)$
$(3,6)(4,5)$
$(1,2)(3,4)(5,6)(7,8)$
$(2,8)(3,4,6,5)$
$(1,4)(2,6)(3,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,7)(2,8)(3,6)(4,5)$$-4$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,7)(2,8)$$0$
$2$$2$$(1,8)(2,7)(3,4)(5,6)$$0$
$4$$2$$(1,4)(2,6)(3,8)(5,7)$$0$
$4$$4$$(1,6,8,4)(2,5,7,3)$$0$
$4$$4$$(1,4,8,6)(2,3,7,5)$$0$
$4$$4$$(1,3,7,6)(2,5,8,4)$$0$
$4$$4$$(1,8,7,2)(3,6)$$0$
$4$$4$$(1,2,7,8)(3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.