Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 701 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 31 + 29\cdot 701 + 368\cdot 701^{2} + 176\cdot 701^{3} + 376\cdot 701^{4} + 215\cdot 701^{5} + 164\cdot 701^{6} +O\left(701^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 254 + 118\cdot 701 + 550\cdot 701^{2} + 255\cdot 701^{3} + 493\cdot 701^{4} + 666\cdot 701^{5} + 652\cdot 701^{6} +O\left(701^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 259 + 321\cdot 701 + 359\cdot 701^{2} + 326\cdot 701^{3} + 440\cdot 701^{4} + 579\cdot 701^{5} + 505\cdot 701^{6} +O\left(701^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 302 + 680\cdot 701 + 190\cdot 701^{2} + 226\cdot 701^{3} + 211\cdot 701^{4} + 321\cdot 701^{5} + 621\cdot 701^{6} +O\left(701^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 400 + 20\cdot 701 + 510\cdot 701^{2} + 474\cdot 701^{3} + 489\cdot 701^{4} + 379\cdot 701^{5} + 79\cdot 701^{6} +O\left(701^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 443 + 379\cdot 701 + 341\cdot 701^{2} + 374\cdot 701^{3} + 260\cdot 701^{4} + 121\cdot 701^{5} + 195\cdot 701^{6} +O\left(701^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 448 + 582\cdot 701 + 150\cdot 701^{2} + 445\cdot 701^{3} + 207\cdot 701^{4} + 34\cdot 701^{5} + 48\cdot 701^{6} +O\left(701^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 671 + 671\cdot 701 + 332\cdot 701^{2} + 524\cdot 701^{3} + 324\cdot 701^{4} + 485\cdot 701^{5} + 536\cdot 701^{6} +O\left(701^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,3,7,5)(2,4,8,6)$ |
| $(1,2)(3,4)(5,6)(7,8)$ |
| $(1,4)(2,6)(3,7)(5,8)$ |
| $(1,8)(2,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,2)(3,4)(5,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(3,6)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,8)(3,4)(5,6)$ |
$0$ |
| $4$ |
$2$ |
$(1,4)(2,6)(3,7)(5,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,5,7,3)(2,6,8,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,3,7,5)(2,4,8,6)$ |
$0$ |
| $4$ |
$4$ |
$(1,8)(3,5,6,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,8)(3,4,6,5)$ |
$0$ |
| $4$ |
$4$ |
$(1,3,8,6)(2,5,7,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.