Properties

Label 4.5e3_101.8t27.1
Dimension 4
Group $((C_8 : C_2):C_2):C_2$
Conductor $ 5^{3} \cdot 101 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$((C_8 : C_2):C_2):C_2$
Conductor:$12625= 5^{3} \cdot 101 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 3 x^{5} - x^{4} - 3 x^{3} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $((C_8 : C_2):C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 701 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 144 + 248\cdot 701 + 197\cdot 701^{2} + 198\cdot 701^{3} + 233\cdot 701^{4} + 228\cdot 701^{5} +O\left(701^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 165 + 624\cdot 701 + 174\cdot 701^{2} + 575\cdot 701^{3} + 106\cdot 701^{4} + 612\cdot 701^{5} +O\left(701^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 200 + 53\cdot 701 + 412\cdot 701^{2} + 676\cdot 701^{3} + 358\cdot 701^{4} + 525\cdot 701^{5} +O\left(701^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 258 + 378\cdot 701 + 392\cdot 701^{2} + 481\cdot 701^{3} + 397\cdot 701^{4} + 610\cdot 701^{5} +O\left(701^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 354 + 477\cdot 701 + 167\cdot 701^{2} + 127\cdot 701^{3} + 142\cdot 701^{4} + 672\cdot 701^{5} +O\left(701^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 424 + 501\cdot 701 + 511\cdot 701^{2} + 304\cdot 701^{3} + 430\cdot 701^{4} + 462\cdot 701^{5} +O\left(701^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 577 + 273\cdot 701 + 300\cdot 701^{2} + 417\cdot 701^{3} + 340\cdot 701^{4} + 100\cdot 701^{5} +O\left(701^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 684 + 246\cdot 701 + 647\cdot 701^{2} + 22\cdot 701^{3} + 93\cdot 701^{4} + 293\cdot 701^{5} +O\left(701^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,3,8,5)(4,7)$
$(1,4)(2,8)(6,7)$
$(6,7)$
$(1,8,7,5,4,2,6,3)$
$(2,8)(6,7)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,8)(3,5)(6,7)$ $-4$
$2$ $2$ $(2,8)(3,5)$ $0$
$4$ $2$ $(1,4)(2,8)(6,7)$ $-2$
$4$ $2$ $(1,7)(2,3)(4,6)(5,8)$ $0$
$4$ $2$ $(2,8)(6,7)$ $0$
$4$ $2$ $(1,4)$ $2$
$4$ $4$ $(1,7,4,6)(2,3,8,5)$ $0$
$8$ $4$ $(1,6)(2,3,8,5)(4,7)$ $0$
$8$ $4$ $(1,2,6,3)(4,8,7,5)$ $0$
$8$ $4$ $(1,3,6,2)(4,5,7,8)$ $0$
$8$ $8$ $(1,8,7,5,4,2,6,3)$ $0$
$8$ $8$ $(1,5,6,8,4,3,7,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.