Properties

Label 4.5e2_9929.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 9929 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$248225= 5^{2} \cdot 9929 $
Artin number field: Splitting field of $f= x^{6} - 7 x^{4} - 2 x^{3} + 11 x^{2} + 7 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.9929.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 32 a + 15 + \left(29 a + 20\right)\cdot 59 + \left(9 a + 7\right)\cdot 59^{2} + \left(24 a + 31\right)\cdot 59^{3} + \left(5 a + 3\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 56 + 20\cdot 59 + 5\cdot 59^{2} + 41\cdot 59^{3} + 11\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 47 + \left(29 a + 17\right)\cdot 59 + \left(49 a + 46\right)\cdot 59^{2} + \left(34 a + 45\right)\cdot 59^{3} + \left(53 a + 43\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 a + 50 + \left(30 a + 30\right)\cdot 59 + \left(22 a + 23\right)\cdot 59^{2} + \left(18 a + 40\right)\cdot 59^{3} + \left(40 a + 43\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 54 + 48\cdot 59 + 19\cdot 59^{2} + 41\cdot 59^{3} + 8\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 36 a + 14 + \left(28 a + 38\right)\cdot 59 + \left(36 a + 15\right)\cdot 59^{2} + \left(40 a + 36\right)\cdot 59^{3} + \left(18 a + 6\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,4)(2,5)(3,6)$
$(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,4)(2,5)(3,6)$$0$
$6$$2$$(1,2)$$2$
$9$$2$$(1,2)(4,5)$$0$
$4$$3$$(1,2,3)(4,5,6)$$-2$
$4$$3$$(1,2,3)$$1$
$18$$4$$(1,5,2,4)(3,6)$$0$
$12$$6$$(1,5,2,6,3,4)$$0$
$12$$6$$(1,2)(4,5,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.