Properties

Label 4.5e2_89e2.5t4.1
Dimension 4
Group $A_5$
Conductor $ 5^{2} \cdot 89^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$198025= 5^{2} \cdot 89^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 5 x^{3} - x^{2} + 6 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 19 + 60\cdot 137 + 117\cdot 137^{2} + 111\cdot 137^{3} + 42\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 13\cdot 137 + 60\cdot 137^{2} + 118\cdot 137^{3} + 89\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 74 + 9\cdot 137 + 52\cdot 137^{2} + 86\cdot 137^{3} + 25\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 78 + 131\cdot 137 + 16\cdot 137^{2} + 132\cdot 137^{3} + 40\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 80 + 59\cdot 137 + 27\cdot 137^{2} + 99\cdot 137^{3} + 74\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$12$ $5$ $(1,2,3,4,5)$ $-1$
$12$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.