Properties

Label 4.5e2_7e2_331.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 7^{2} \cdot 331 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$405475= 5^{2} \cdot 7^{2} \cdot 331 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + x^{4} - x^{3} - x^{2} + 20 x - 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 17 + \left(9 a + 23\right)\cdot 31 + \left(6 a + 28\right)\cdot 31^{2} + \left(8 a + 16\right)\cdot 31^{3} + \left(29 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 18 + \left(9 a + 9\right)\cdot 31 + \left(29 a + 5\right)\cdot 31^{2} + \left(a + 18\right)\cdot 31^{3} + 16 a\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 29 + 13\cdot 31 + 20\cdot 31^{2} + 17\cdot 31^{3} + 10\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 30 + 4\cdot 31 + 14\cdot 31^{2} + 20\cdot 31^{3} + 29\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 5 + \left(21 a + 18\right)\cdot 31 + 24 a\cdot 31^{2} + \left(22 a + 27\right)\cdot 31^{3} + \left(a + 4\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 28 + \left(21 a + 22\right)\cdot 31 + \left(a + 23\right)\cdot 31^{2} + \left(29 a + 23\right)\cdot 31^{3} + \left(14 a + 30\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $0$
$6$ $2$ $(1,3)$ $2$
$9$ $2$ $(1,3)(2,4)$ $0$
$4$ $3$ $(1,3,5)(2,4,6)$ $-2$
$4$ $3$ $(1,3,5)$ $1$
$18$ $4$ $(1,4,3,2)(5,6)$ $0$
$12$ $6$ $(1,4,3,6,5,2)$ $0$
$12$ $6$ $(1,3)(2,4,6)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.