Properties

Label 4.5e2_7e2_13_17.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 7^{2} \cdot 13 \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$270725= 5^{2} \cdot 7^{2} \cdot 13 \cdot 17 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 6 x^{4} - 6 x^{3} + 9 x^{2} - 10 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 47 a + 26 + \left(14 a + 42\right)\cdot 71 + \left(26 a + 3\right)\cdot 71^{2} + \left(68 a + 33\right)\cdot 71^{3} + \left(7 a + 43\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 27 + \left(41 a + 23\right)\cdot 71 + \left(58 a + 23\right)\cdot 71^{2} + 10\cdot 71^{3} + \left(34 a + 21\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 70 a + 29 + \left(29 a + 33\right)\cdot 71 + \left(12 a + 28\right)\cdot 71^{2} + \left(70 a + 24\right)\cdot 71^{3} + \left(36 a + 17\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 a + 49 + \left(56 a + 24\right)\cdot 71 + \left(44 a + 41\right)\cdot 71^{2} + \left(2 a + 1\right)\cdot 71^{3} + \left(63 a + 62\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 55 + 46\cdot 71 + 20\cdot 71^{2} + 70\cdot 71^{3} + 6\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 30 + 42\cdot 71 + 24\cdot 71^{2} + 2\cdot 71^{3} + 62\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6)$
$(1,2)(3,4)(5,6)$
$(1,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $0$
$6$ $2$ $(2,3)$ $2$
$9$ $2$ $(1,4)(2,3)$ $0$
$4$ $3$ $(1,4,6)(2,3,5)$ $-2$
$4$ $3$ $(2,3,5)$ $1$
$18$ $4$ $(1,2,4,3)(5,6)$ $0$
$12$ $6$ $(1,2,4,3,6,5)$ $0$
$12$ $6$ $(1,4,6)(2,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.