Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 401 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 11 + 270\cdot 401 + 222\cdot 401^{2} + 85\cdot 401^{3} + 317\cdot 401^{4} +O\left(401^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 92 + 174\cdot 401 + 2\cdot 401^{2} + 357\cdot 401^{3} + 342\cdot 401^{4} +O\left(401^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 181 + 304\cdot 401 + 218\cdot 401^{2} + 26\cdot 401^{3} + 231\cdot 401^{4} +O\left(401^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 191 + 11\cdot 401 + 187\cdot 401^{2} + 250\cdot 401^{3} + 93\cdot 401^{4} +O\left(401^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 329 + 41\cdot 401 + 171\cdot 401^{2} + 82\cdot 401^{3} + 218\cdot 401^{4} +O\left(401^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $12$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $12$ |
$5$ |
$(1,3,4,5,2)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.