Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 31.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 a + 29 + \left(8 a + 4\right)\cdot 37 + \left(22 a + 29\right)\cdot 37^{2} + \left(25 a + 29\right)\cdot 37^{3} + \left(17 a + 12\right)\cdot 37^{4} + \left(26 a + 13\right)\cdot 37^{5} + \left(20 a + 9\right)\cdot 37^{6} + \left(35 a + 8\right)\cdot 37^{7} + \left(32 a + 17\right)\cdot 37^{8} + \left(7 a + 33\right)\cdot 37^{9} + \left(12 a + 33\right)\cdot 37^{10} + \left(7 a + 28\right)\cdot 37^{11} + \left(23 a + 31\right)\cdot 37^{12} + \left(12 a + 8\right)\cdot 37^{13} + \left(2 a + 33\right)\cdot 37^{14} + \left(7 a + 22\right)\cdot 37^{15} + \left(17 a + 3\right)\cdot 37^{16} + \left(2 a + 28\right)\cdot 37^{17} + \left(12 a + 15\right)\cdot 37^{18} + \left(15 a + 21\right)\cdot 37^{19} + \left(19 a + 29\right)\cdot 37^{20} + \left(3 a + 32\right)\cdot 37^{21} + \left(28 a + 19\right)\cdot 37^{22} + \left(2 a + 16\right)\cdot 37^{23} + \left(20 a + 33\right)\cdot 37^{24} + \left(13 a + 10\right)\cdot 37^{25} + \left(20 a + 22\right)\cdot 37^{26} + \left(9 a + 7\right)\cdot 37^{27} + \left(3 a + 10\right)\cdot 37^{28} + \left(8 a + 20\right)\cdot 37^{29} + \left(11 a + 2\right)\cdot 37^{30} +O\left(37^{ 31 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 36 a + 12 + \left(24 a + 19\right)\cdot 37 + \left(19 a + 2\right)\cdot 37^{2} + 31\cdot 37^{3} + \left(32 a + 1\right)\cdot 37^{4} + \left(6 a + 23\right)\cdot 37^{5} + \left(36 a + 36\right)\cdot 37^{6} + \left(34 a + 1\right)\cdot 37^{7} + \left(21 a + 7\right)\cdot 37^{8} + \left(2 a + 23\right)\cdot 37^{9} + \left(23 a + 8\right)\cdot 37^{10} + \left(23 a + 8\right)\cdot 37^{11} + \left(29 a + 11\right)\cdot 37^{12} + \left(22 a + 36\right)\cdot 37^{13} + \left(7 a + 35\right)\cdot 37^{14} + \left(16 a + 26\right)\cdot 37^{15} + \left(25 a + 8\right)\cdot 37^{16} + \left(30 a + 32\right)\cdot 37^{17} + \left(a + 24\right)\cdot 37^{18} + \left(5 a + 32\right)\cdot 37^{19} + 27 a\cdot 37^{20} + 21\cdot 37^{21} + \left(34 a + 20\right)\cdot 37^{22} + \left(14 a + 34\right)\cdot 37^{23} + \left(2 a + 9\right)\cdot 37^{24} + \left(2 a + 3\right)\cdot 37^{25} + \left(8 a + 35\right)\cdot 37^{26} + \left(24 a + 12\right)\cdot 37^{27} + \left(25 a + 32\right)\cdot 37^{28} + \left(19 a + 26\right)\cdot 37^{29} + \left(12 a + 2\right)\cdot 37^{30} +O\left(37^{ 31 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 27 a + 32 + \left(28 a + 27\right)\cdot 37 + \left(14 a + 35\right)\cdot 37^{2} + \left(11 a + 35\right)\cdot 37^{3} + \left(19 a + 20\right)\cdot 37^{4} + \left(10 a + 27\right)\cdot 37^{5} + \left(16 a + 28\right)\cdot 37^{6} + \left(a + 18\right)\cdot 37^{7} + \left(4 a + 2\right)\cdot 37^{8} + \left(29 a + 32\right)\cdot 37^{9} + 24 a\cdot 37^{10} + \left(29 a + 9\right)\cdot 37^{11} + \left(13 a + 6\right)\cdot 37^{12} + \left(24 a + 36\right)\cdot 37^{13} + \left(34 a + 29\right)\cdot 37^{14} + \left(29 a + 11\right)\cdot 37^{15} + \left(19 a + 28\right)\cdot 37^{16} + \left(34 a + 20\right)\cdot 37^{17} + \left(24 a + 24\right)\cdot 37^{18} + \left(21 a + 33\right)\cdot 37^{19} + \left(17 a + 17\right)\cdot 37^{20} + \left(33 a + 27\right)\cdot 37^{21} + \left(8 a + 17\right)\cdot 37^{22} + \left(34 a + 36\right)\cdot 37^{23} + \left(16 a + 36\right)\cdot 37^{24} + \left(23 a + 7\right)\cdot 37^{25} + \left(16 a + 16\right)\cdot 37^{26} + \left(27 a + 25\right)\cdot 37^{27} + \left(33 a + 13\right)\cdot 37^{28} + \left(28 a + 12\right)\cdot 37^{29} + \left(25 a + 2\right)\cdot 37^{30} +O\left(37^{ 31 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 3 a + 24 + \left(10 a + 7\right)\cdot 37 + \left(26 a + 2\right)\cdot 37^{2} + \left(28 a + 16\right)\cdot 37^{3} + \left(16 a + 3\right)\cdot 37^{4} + \left(9 a + 9\right)\cdot 37^{5} + \left(23 a + 1\right)\cdot 37^{6} + \left(4 a + 6\right)\cdot 37^{7} + \left(11 a + 10\right)\cdot 37^{8} + \left(26 a + 7\right)\cdot 37^{9} + \left(25 a + 26\right)\cdot 37^{10} + \left(12 a + 18\right)\cdot 37^{11} + 23 a\cdot 37^{12} + \left(25 a + 28\right)\cdot 37^{13} + \left(13 a + 27\right)\cdot 37^{14} + \left(9 a + 26\right)\cdot 37^{15} + \left(6 a + 29\right)\cdot 37^{16} + \left(5 a + 8\right)\cdot 37^{17} + \left(12 a + 24\right)\cdot 37^{18} + \left(17 a + 17\right)\cdot 37^{19} + \left(29 a + 32\right)\cdot 37^{20} + \left(29 a + 26\right)\cdot 37^{21} + \left(36 a + 10\right)\cdot 37^{22} + \left(11 a + 9\right)\cdot 37^{23} + \left(6 a + 18\right)\cdot 37^{24} + \left(28 a + 35\right)\cdot 37^{25} + \left(11 a + 36\right)\cdot 37^{26} + \left(34 a + 5\right)\cdot 37^{27} + \left(10 a + 34\right)\cdot 37^{28} + 35 a\cdot 37^{29} + \left(14 a + 31\right)\cdot 37^{30} +O\left(37^{ 31 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 3 + 7\cdot 37 + 35\cdot 37^{2} + 6\cdot 37^{3} + 30\cdot 37^{4} + 9\cdot 37^{5} + 25\cdot 37^{6} + 19\cdot 37^{7} + 15\cdot 37^{8} + 18\cdot 37^{9} + 6\cdot 37^{10} + 14\cdot 37^{11} + 21\cdot 37^{12} + 17\cdot 37^{13} + 36\cdot 37^{14} + 12\cdot 37^{15} + 18\cdot 37^{16} + 20\cdot 37^{17} + 15\cdot 37^{18} + 35\cdot 37^{19} + 29\cdot 37^{20} + 34\cdot 37^{21} + 30\cdot 37^{22} + 7\cdot 37^{23} + 19\cdot 37^{24} + 36\cdot 37^{25} + 18\cdot 37^{26} + 7\cdot 37^{27} + 33\cdot 37^{28} + 15\cdot 37^{29} + 19\cdot 37^{30} +O\left(37^{ 31 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 6 + 27\cdot 37 + 21\cdot 37^{3} + 18\cdot 37^{4} + 16\cdot 37^{5} + 9\cdot 37^{6} + 23\cdot 37^{7} + 22\cdot 37^{8} + 31\cdot 37^{9} + 18\cdot 37^{10} + 19\cdot 37^{11} + 37^{13} + 32\cdot 37^{14} + 22\cdot 37^{15} + 30\cdot 37^{16} + 32\cdot 37^{17} + 10\cdot 37^{18} + 29\cdot 37^{19} + 21\cdot 37^{20} + 2\cdot 37^{21} + 23\cdot 37^{22} + 36\cdot 37^{23} + 30\cdot 37^{24} + 13\cdot 37^{25} + 8\cdot 37^{26} + 3\cdot 37^{27} + 18\cdot 37^{28} + 8\cdot 37^{29} + 37^{30} +O\left(37^{ 31 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ a + 8 + \left(12 a + 9\right)\cdot 37 + \left(17 a + 19\right)\cdot 37^{2} + \left(36 a + 13\right)\cdot 37^{3} + \left(4 a + 18\right)\cdot 37^{4} + \left(30 a + 18\right)\cdot 37^{5} + 26\cdot 37^{6} + \left(2 a + 31\right)\cdot 37^{7} + \left(15 a + 22\right)\cdot 37^{8} + \left(34 a + 11\right)\cdot 37^{9} + \left(13 a + 24\right)\cdot 37^{10} + \left(13 a + 5\right)\cdot 37^{11} + \left(7 a + 32\right)\cdot 37^{12} + \left(14 a + 23\right)\cdot 37^{13} + \left(29 a + 6\right)\cdot 37^{14} + \left(20 a + 10\right)\cdot 37^{15} + \left(11 a + 20\right)\cdot 37^{16} + \left(6 a + 18\right)\cdot 37^{17} + \left(35 a + 1\right)\cdot 37^{18} + \left(31 a + 14\right)\cdot 37^{19} + \left(9 a + 30\right)\cdot 37^{20} + \left(36 a + 33\right)\cdot 37^{21} + \left(2 a + 7\right)\cdot 37^{22} + \left(22 a + 23\right)\cdot 37^{23} + \left(34 a + 4\right)\cdot 37^{24} + \left(34 a + 9\right)\cdot 37^{25} + \left(28 a + 28\right)\cdot 37^{26} + \left(12 a + 27\right)\cdot 37^{27} + \left(11 a + 36\right)\cdot 37^{28} + \left(17 a + 5\right)\cdot 37^{29} + \left(24 a + 33\right)\cdot 37^{30} +O\left(37^{ 31 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 34 a + 36 + \left(26 a + 7\right)\cdot 37 + \left(10 a + 23\right)\cdot 37^{2} + \left(8 a + 30\right)\cdot 37^{3} + \left(20 a + 4\right)\cdot 37^{4} + \left(27 a + 30\right)\cdot 37^{5} + \left(13 a + 10\right)\cdot 37^{6} + \left(32 a + 1\right)\cdot 37^{7} + \left(25 a + 13\right)\cdot 37^{8} + \left(10 a + 27\right)\cdot 37^{9} + \left(11 a + 28\right)\cdot 37^{10} + \left(24 a + 6\right)\cdot 37^{11} + \left(13 a + 7\right)\cdot 37^{12} + \left(11 a + 33\right)\cdot 37^{13} + \left(23 a + 19\right)\cdot 37^{14} + \left(27 a + 13\right)\cdot 37^{15} + \left(30 a + 8\right)\cdot 37^{16} + \left(31 a + 23\right)\cdot 37^{17} + \left(24 a + 30\right)\cdot 37^{18} + 19 a\cdot 37^{19} + \left(7 a + 22\right)\cdot 37^{20} + \left(7 a + 5\right)\cdot 37^{21} + 17\cdot 37^{22} + \left(25 a + 20\right)\cdot 37^{23} + \left(30 a + 31\right)\cdot 37^{24} + \left(8 a + 30\right)\cdot 37^{25} + \left(25 a + 18\right)\cdot 37^{26} + \left(2 a + 20\right)\cdot 37^{27} + \left(26 a + 6\right)\cdot 37^{28} + \left(a + 20\right)\cdot 37^{29} + \left(22 a + 18\right)\cdot 37^{30} +O\left(37^{ 31 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,6,3,2,4,5,8,7)$ |
| $(3,8)(5,6)$ |
| $(2,7)(3,8)$ |
| $(1,8)(2,6)(3,4)(5,7)$ |
| $(1,6)(2,8)(3,7)(4,5)$ |
| $(1,7)(2,4)(3,6)(5,8)$ |
| $(2,5,3)(6,8,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,4)(2,7)(3,8)(5,6)$ |
$-4$ |
| $6$ |
$2$ |
$(2,7)(3,8)$ |
$0$ |
| $12$ |
$2$ |
$(1,7)(2,4)(3,6)(5,8)$ |
$0$ |
| $24$ |
$2$ |
$(1,4)(2,6)(5,7)$ |
$0$ |
| $32$ |
$3$ |
$(2,5,3)(6,8,7)$ |
$1$ |
| $6$ |
$4$ |
$(1,3,4,8)(2,5,7,6)$ |
$0$ |
| $6$ |
$4$ |
$(1,3,4,8)(2,6,7,5)$ |
$0$ |
| $12$ |
$4$ |
$(1,3,4,8)$ |
$2$ |
| $12$ |
$4$ |
$(1,4)(2,6,7,5)(3,8)$ |
$-2$ |
| $32$ |
$6$ |
$(1,4)(2,5,3,7,6,8)$ |
$-1$ |
| $24$ |
$8$ |
$(1,6,3,2,4,5,8,7)$ |
$0$ |
| $24$ |
$8$ |
$(1,7,3,5,4,2,8,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.