Properties

Label 4.5e2_449.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 449 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$11225= 5^{2} \cdot 449 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 21 x^{3} - 18 x^{2} - 19 x - 22 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.449.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 12 + \left(21 a + 14\right)\cdot 31 + \left(13 a + 4\right)\cdot 31^{2} + \left(12 a + 18\right)\cdot 31^{3} + \left(5 a + 25\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 15 + \left(9 a + 9\right)\cdot 31 + \left(17 a + 10\right)\cdot 31^{2} + \left(18 a + 29\right)\cdot 31^{3} + \left(25 a + 23\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 19 + \left(23 a + 9\right)\cdot 31 + \left(8 a + 27\right)\cdot 31^{2} + \left(26 a + 24\right)\cdot 31^{3} + \left(5 a + 8\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 1 + \left(17 a + 7\right)\cdot 31 + \left(8 a + 30\right)\cdot 31^{2} + \left(23 a + 18\right)\cdot 31^{3} + \left(19 a + 27\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 11 + \left(13 a + 5\right)\cdot 31 + \left(22 a + 30\right)\cdot 31^{2} + \left(7 a + 25\right)\cdot 31^{3} + \left(11 a + 12\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 6 + \left(7 a + 16\right)\cdot 31 + \left(22 a + 21\right)\cdot 31^{2} + \left(4 a + 6\right)\cdot 31^{3} + \left(25 a + 25\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)$
$(1,2)(3,5)(4,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$2$
$6$$2$$(1,3)$$0$
$9$$2$$(1,3)(2,5)$$0$
$4$$3$$(1,3,4)$$-2$
$4$$3$$(1,3,4)(2,5,6)$$1$
$18$$4$$(1,5,3,2)(4,6)$$0$
$12$$6$$(1,5,3,6,4,2)$$-1$
$12$$6$$(1,3)(2,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.