Properties

Label 4.5e2_439_2411.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 439 \cdot 2411 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$26460725= 5^{2} \cdot 439 \cdot 2411 $
Artin number field: Splitting field of $f= x^{6} - 20 x^{4} - 21 x^{3} + 95 x^{2} + 195 x + 99 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.439_2411.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 + 15\cdot 29 + 16\cdot 29^{2} + 8\cdot 29^{3} + 25\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 2 + \left(21 a + 8\right)\cdot 29 + \left(8 a + 24\right)\cdot 29^{2} + \left(8 a + 22\right)\cdot 29^{3} + \left(26 a + 12\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 19 + \left(24 a + 24\right)\cdot 29 + \left(8 a + 8\right)\cdot 29^{2} + \left(3 a + 14\right)\cdot 29^{3} + \left(20 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 28 + \left(4 a + 7\right)\cdot 29 + \left(20 a + 28\right)\cdot 29^{2} + \left(25 a + 21\right)\cdot 29^{3} + \left(8 a + 18\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 11 + 25\cdot 29 + 20\cdot 29^{2} + 21\cdot 29^{3} + 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 11 + \left(7 a + 5\right)\cdot 29 + \left(20 a + 17\right)\cdot 29^{2} + \left(20 a + 26\right)\cdot 29^{3} + \left(2 a + 19\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)$
$(1,3)(2,4)(5,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$0$
$6$$2$$(2,6)$$2$
$9$$2$$(2,6)(4,5)$$0$
$4$$3$$(1,2,6)(3,4,5)$$-2$
$4$$3$$(3,4,5)$$1$
$18$$4$$(1,3)(2,5,6,4)$$0$
$12$$6$$(1,3,2,4,6,5)$$0$
$12$$6$$(2,6)(3,4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.