Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 a + 7 + \left(11 a + 15\right)\cdot 31 + \left(12 a + 28\right)\cdot 31^{2} + \left(17 a + 30\right)\cdot 31^{3} + \left(22 a + 13\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 a + 16 + \left(22 a + 30\right)\cdot 31 + \left(21 a + 5\right)\cdot 31^{2} + \left(a + 24\right)\cdot 31^{3} + \left(13 a + 25\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 16 + 25\cdot 31 + 28\cdot 31^{2} + 17\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 20 + 22\cdot 31 + 22\cdot 31^{2} + 8\cdot 31^{3} + 6\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 24 a + 30 + \left(8 a + 5\right)\cdot 31 + \left(9 a + 27\right)\cdot 31^{2} + \left(29 a + 5\right)\cdot 31^{3} + \left(17 a + 19\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 17 a + 4 + \left(19 a + 24\right)\cdot 31 + \left(18 a + 10\right)\cdot 31^{2} + \left(13 a + 22\right)\cdot 31^{3} + \left(8 a + 10\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,4,6)$ |
| $(1,2)(3,4)(5,6)$ |
| $(1,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $6$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$0$ |
| $6$ |
$2$ |
$(3,5)$ |
$2$ |
| $9$ |
$2$ |
$(3,5)(4,6)$ |
$0$ |
| $4$ |
$3$ |
$(1,4,6)$ |
$1$ |
| $4$ |
$3$ |
$(1,4,6)(2,3,5)$ |
$-2$ |
| $18$ |
$4$ |
$(1,2)(3,6,5,4)$ |
$0$ |
| $12$ |
$6$ |
$(1,3,4,5,6,2)$ |
$0$ |
| $12$ |
$6$ |
$(1,4,6)(3,5)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.