Properties

Label 4.5e2_41e3_59e3.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 41^{3} \cdot 59^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$353873151475= 5^{2} \cdot 41^{3} \cdot 59^{3} $
Artin number field: Splitting field of $f= x^{6} + 6 x^{4} - 27 x^{3} + 9 x^{2} - 81 x + 787 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd
Determinant: 1.41_59.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 55 + 45\cdot 101 + 92\cdot 101^{2} + 32\cdot 101^{3} + 36\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 66 a + 93 + \left(63 a + 84\right)\cdot 101 + \left(26 a + 83\right)\cdot 101^{2} + \left(32 a + 83\right)\cdot 101^{3} + \left(92 a + 65\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 + 27\cdot 101 + 96\cdot 101^{2} + 44\cdot 101^{3} + 22\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 72 a + 6 + \left(56 a + 10\right)\cdot 101 + \left(17 a + 46\right)\cdot 101^{2} + \left(76 a + 86\right)\cdot 101^{3} + \left(59 a + 58\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 35 a + 54 + \left(37 a + 71\right)\cdot 101 + \left(74 a + 25\right)\cdot 101^{2} + \left(68 a + 85\right)\cdot 101^{3} + \left(8 a + 99\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 92 + \left(44 a + 63\right)\cdot 101 + \left(83 a + 59\right)\cdot 101^{2} + \left(24 a + 70\right)\cdot 101^{3} + \left(41 a + 19\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2)$
$(1,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$-2$
$6$$2$$(1,2)$$0$
$9$$2$$(1,2)(3,4)$$0$
$4$$3$$(1,2,5)(3,4,6)$$1$
$4$$3$$(3,4,6)$$-2$
$18$$4$$(1,4,2,3)(5,6)$$0$
$12$$6$$(1,3,2,4,5,6)$$1$
$12$$6$$(1,2)(3,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.