Properties

Label 4.5e2_29e3.6t10.2c1
Dimension 4
Group $C_3^2:C_4$
Conductor $ 5^{2} \cdot 29^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:C_4$
Conductor:$609725= 5^{2} \cdot 29^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 3 x^{4} + 13 x^{3} + 16 x^{2} - 84 x + 23 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_4$
Parity: Even
Determinant: 1.29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 52 a + 9 + \left(56 a + 25\right)\cdot 67 + \left(63 a + 30\right)\cdot 67^{2} + \left(54 a + 29\right)\cdot 67^{3} + \left(31 a + 28\right)\cdot 67^{4} + \left(35 a + 25\right)\cdot 67^{5} + \left(44 a + 59\right)\cdot 67^{6} + \left(4 a + 33\right)\cdot 67^{7} + \left(33 a + 23\right)\cdot 67^{8} + \left(58 a + 58\right)\cdot 67^{9} + \left(15 a + 48\right)\cdot 67^{10} + \left(62 a + 46\right)\cdot 67^{11} + \left(7 a + 30\right)\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 61 + 31\cdot 67 + 23\cdot 67^{2} + 20\cdot 67^{3} + 26\cdot 67^{4} + 23\cdot 67^{5} + 40\cdot 67^{6} + 48\cdot 67^{7} + 31\cdot 67^{8} + 36\cdot 67^{9} + 48\cdot 67^{10} + 37\cdot 67^{11} + 28\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 36 + \left(29 a + 42\right)\cdot 67 + \left(52 a + 28\right)\cdot 67^{2} + \left(14 a + 29\right)\cdot 67^{3} + \left(33 a + 2\right)\cdot 67^{4} + \left(58 a + 5\right)\cdot 67^{5} + \left(24 a + 27\right)\cdot 67^{6} + \left(a + 59\right)\cdot 67^{7} + \left(52 a + 8\right)\cdot 67^{8} + \left(10 a + 46\right)\cdot 67^{9} + \left(18 a + 34\right)\cdot 67^{10} + \left(35 a + 29\right)\cdot 67^{11} + \left(65 a + 53\right)\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 49 a + 41 + \left(37 a + 7\right)\cdot 67 + \left(14 a + 8\right)\cdot 67^{2} + \left(52 a + 36\right)\cdot 67^{3} + \left(33 a + 53\right)\cdot 67^{4} + \left(8 a + 4\right)\cdot 67^{5} + \left(42 a + 1\right)\cdot 67^{6} + \left(65 a + 40\right)\cdot 67^{7} + \left(14 a + 14\right)\cdot 67^{8} + \left(56 a + 37\right)\cdot 67^{9} + \left(48 a + 29\right)\cdot 67^{10} + \left(31 a + 18\right)\cdot 67^{11} + \left(a + 12\right)\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 16 + \left(10 a + 66\right)\cdot 67 + \left(3 a + 27\right)\cdot 67^{2} + \left(12 a + 51\right)\cdot 67^{3} + \left(35 a + 33\right)\cdot 67^{4} + \left(31 a + 1\right)\cdot 67^{5} + \left(22 a + 1\right)\cdot 67^{6} + \left(62 a + 8\right)\cdot 67^{7} + \left(33 a + 17\right)\cdot 67^{8} + \left(8 a + 58\right)\cdot 67^{9} + \left(51 a + 53\right)\cdot 67^{10} + \left(4 a + 11\right)\cdot 67^{11} + 59 a\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 39 + 27\cdot 67 + 15\cdot 67^{2} + 34\cdot 67^{3} + 56\cdot 67^{4} + 6\cdot 67^{5} + 5\cdot 67^{6} + 11\cdot 67^{7} + 38\cdot 67^{8} + 31\cdot 67^{9} + 52\cdot 67^{10} + 56\cdot 67^{11} + 8\cdot 67^{12} +O\left(67^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2,3)(5,6)$
$(1,2,5)$
$(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$9$$2$$(1,2)(3,4)$$0$
$4$$3$$(3,4,6)$$-2$
$4$$3$$(1,2,5)(3,4,6)$$1$
$9$$4$$(1,4,2,3)(5,6)$$0$
$9$$4$$(1,3,2,4)(5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.