Properties

Label 4.5e2_2099.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 2099 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$52475= 5^{2} \cdot 2099 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 5 x^{3} - 7 x^{2} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd
Determinant: 1.2099.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 39 + 22\cdot 41 + 39\cdot 41^{2} + 36\cdot 41^{3} + 24\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 36 + \left(a + 15\right)\cdot 41 + \left(16 a + 18\right)\cdot 41^{2} + \left(19 a + 1\right)\cdot 41^{3} + \left(11 a + 21\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 8 + \left(39 a + 2\right)\cdot 41 + \left(24 a + 24\right)\cdot 41^{2} + \left(21 a + 2\right)\cdot 41^{3} + \left(29 a + 36\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 + 28\cdot 41 + 12\cdot 41^{2} + 21\cdot 41^{3} + 31\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 4 + \left(29 a + 29\right)\cdot 41 + \left(40 a + 8\right)\cdot 41^{2} + \left(17 a + 3\right)\cdot 41^{3} + \left(7 a + 23\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 31 a + 34 + \left(11 a + 24\right)\cdot 41 + 19\cdot 41^{2} + \left(23 a + 16\right)\cdot 41^{3} + \left(33 a + 27\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,4)(2,5)(3,6)$
$(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,4)(2,5)(3,6)$$0$
$6$$2$$(2,3)$$2$
$9$$2$$(2,3)(5,6)$$0$
$4$$3$$(1,2,3)(4,5,6)$$-2$
$4$$3$$(1,2,3)$$1$
$18$$4$$(1,4)(2,6,3,5)$$0$
$12$$6$$(1,5,2,6,3,4)$$0$
$12$$6$$(2,3)(4,5,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.