Properties

Label 4.5e2_19e3_61e3.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 19^{3} \cdot 61^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$38921566975= 5^{2} \cdot 19^{3} \cdot 61^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 5 x^{3} - 2 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd
Determinant: 1.19_61.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 4\cdot 31 + 23\cdot 31^{2} + 7\cdot 31^{3} + 26\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 25 + \left(20 a + 19\right)\cdot 31 + \left(5 a + 8\right)\cdot 31^{2} + \left(4 a + 10\right)\cdot 31^{3} + \left(2 a + 2\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 13\cdot 31 + 10\cdot 31^{2} + 31^{3} + 10\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 22 + \left(20 a + 27\right)\cdot 31 + \left(16 a + 3\right)\cdot 31^{2} + \left(4 a + 3\right)\cdot 31^{3} + \left(7 a + 21\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 25 + \left(10 a + 20\right)\cdot 31 + \left(14 a + 16\right)\cdot 31^{2} + \left(26 a + 26\right)\cdot 31^{3} + \left(23 a + 30\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 11 + \left(10 a + 6\right)\cdot 31 + \left(25 a + 30\right)\cdot 31^{2} + \left(26 a + 12\right)\cdot 31^{3} + \left(28 a + 2\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(3,4)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$0$
$6$$2$$(2,6)$$-2$
$9$$2$$(2,6)(4,5)$$0$
$4$$3$$(1,2,6)(3,4,5)$$-2$
$4$$3$$(1,2,6)$$1$
$18$$4$$(1,3)(2,5,6,4)$$0$
$12$$6$$(1,4,2,5,6,3)$$0$
$12$$6$$(2,6)(3,4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.