Properties

Label 4.5e2_19e3_29.8t35.3c1
Dimension 4
Group $C_2 \wr C_2\wr C_2$
Conductor $ 5^{2} \cdot 19^{3} \cdot 29 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2 \wr C_2\wr C_2$
Conductor:$4972775= 5^{2} \cdot 19^{3} \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - x^{5} + x^{4} + 2 x^{3} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2 \wr C_2\wr C_2$
Parity: Odd
Determinant: 1.19_29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 40 a + 12 + 41 + \left(25 a + 23\right)\cdot 41^{2} + \left(14 a + 6\right)\cdot 41^{3} + \left(11 a + 19\right)\cdot 41^{4} + \left(19 a + 1\right)\cdot 41^{5} + \left(a + 7\right)\cdot 41^{6} + \left(29 a + 19\right)\cdot 41^{7} + \left(a + 4\right)\cdot 41^{8} + \left(11 a + 9\right)\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 2 }$ $=$ $ a + 9 + \left(40 a + 5\right)\cdot 41 + \left(15 a + 15\right)\cdot 41^{2} + \left(26 a + 25\right)\cdot 41^{3} + \left(29 a + 38\right)\cdot 41^{4} + \left(21 a + 6\right)\cdot 41^{5} + \left(39 a + 33\right)\cdot 41^{6} + \left(11 a + 22\right)\cdot 41^{7} + \left(39 a + 21\right)\cdot 41^{8} + \left(29 a + 40\right)\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 8 + \left(39 a + 15\right)\cdot 41 + \left(37 a + 36\right)\cdot 41^{2} + \left(11 a + 20\right)\cdot 41^{3} + \left(39 a + 6\right)\cdot 41^{4} + \left(2 a + 20\right)\cdot 41^{5} + \left(2 a + 14\right)\cdot 41^{6} + \left(39 a + 11\right)\cdot 41^{7} + \left(13 a + 6\right)\cdot 41^{8} + \left(35 a + 27\right)\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 33 + 26\cdot 41 + 24\cdot 41^{2} + 11\cdot 41^{3} + 24\cdot 41^{4} + 9\cdot 41^{5} + 19\cdot 41^{6} + 27\cdot 41^{7} + 38\cdot 41^{8} + 6\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 28 a + 6 + \left(a + 38\right)\cdot 41 + \left(3 a + 28\right)\cdot 41^{2} + \left(29 a + 18\right)\cdot 41^{3} + \left(a + 30\right)\cdot 41^{4} + \left(38 a + 30\right)\cdot 41^{5} + \left(38 a + 17\right)\cdot 41^{6} + \left(a + 3\right)\cdot 41^{7} + \left(27 a + 9\right)\cdot 41^{8} + \left(5 a + 37\right)\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 35 + 12\cdot 41 + 38\cdot 41^{2} + 19\cdot 41^{3} + 19\cdot 41^{4} + 12\cdot 41^{5} + 11\cdot 41^{6} + 2\cdot 41^{7} + 20\cdot 41^{8} + 12\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 7 a + \left(6 a + 6\right)\cdot 41 + \left(27 a + 2\right)\cdot 41^{2} + \left(13 a + 3\right)\cdot 41^{3} + \left(27 a + 40\right)\cdot 41^{4} + \left(17 a + 7\right)\cdot 41^{5} + \left(7 a + 28\right)\cdot 41^{6} + \left(7 a + 31\right)\cdot 41^{7} + \left(15 a + 12\right)\cdot 41^{8} + \left(14 a + 1\right)\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 34 a + 21 + \left(34 a + 17\right)\cdot 41 + \left(13 a + 36\right)\cdot 41^{2} + \left(27 a + 16\right)\cdot 41^{3} + \left(13 a + 26\right)\cdot 41^{4} + \left(23 a + 33\right)\cdot 41^{5} + \left(33 a + 32\right)\cdot 41^{6} + \left(33 a + 4\right)\cdot 41^{7} + \left(25 a + 10\right)\cdot 41^{8} + \left(26 a + 29\right)\cdot 41^{9} +O\left(41^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(4,7)(6,8)$
$(1,7)(2,4)(3,6)(5,8)$
$(7,8)$
$(1,5)$
$(2,3)$
$(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,3)(4,6)(7,8)$$-4$
$2$$2$$(1,5)(2,3)$$0$
$4$$2$$(1,5)$$2$
$4$$2$$(1,2)(3,5)(4,7)(6,8)$$0$
$4$$2$$(1,5)(7,8)$$0$
$4$$2$$(1,2)(3,5)$$-2$
$4$$2$$(1,5)(2,3)(4,7)(6,8)$$2$
$4$$2$$(1,5)(2,3)(4,6)$$-2$
$8$$2$$(1,7)(2,4)(3,6)(5,8)$$0$
$8$$2$$(1,5)(4,7)(6,8)$$0$
$4$$4$$(1,3,5,2)(4,7,6,8)$$0$
$4$$4$$(1,3,5,2)$$-2$
$4$$4$$(1,5)(2,3)(4,8,6,7)$$2$
$8$$4$$(1,8,5,7)(2,6,3,4)$$0$
$8$$4$$(1,3,5,2)(4,7)(6,8)$$0$
$8$$4$$(1,3,5,2)(4,6)$$0$
$16$$4$$(1,4,2,7)(3,8,5,6)$$0$
$16$$4$$(1,8,5,7)(2,4)(3,6)$$0$
$16$$8$$(1,6,3,8,5,4,2,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.