Properties

Label 4.5e2_19_29e3.8t35.4c1
Dimension 4
Group $C_2 \wr C_2\wr C_2$
Conductor $ 5^{2} \cdot 19 \cdot 29^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2 \wr C_2\wr C_2$
Conductor:$11584775= 5^{2} \cdot 19 \cdot 29^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} - 3 x^{5} + 3 x^{4} - 3 x^{3} + 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2 \wr C_2\wr C_2$
Parity: Odd
Determinant: 1.19_29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + \left(26 a + 11\right)\cdot 41 + \left(27 a + 32\right)\cdot 41^{2} + \left(17 a + 39\right)\cdot 41^{3} + \left(15 a + 35\right)\cdot 41^{4} + \left(20 a + 21\right)\cdot 41^{5} + \left(5 a + 36\right)\cdot 41^{6} + \left(17 a + 3\right)\cdot 41^{7} + \left(9 a + 21\right)\cdot 41^{8} + \left(35 a + 23\right)\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 35 a + 18 + \left(14 a + 1\right)\cdot 41 + \left(13 a + 7\right)\cdot 41^{2} + \left(23 a + 24\right)\cdot 41^{3} + \left(25 a + 23\right)\cdot 41^{4} + \left(20 a + 26\right)\cdot 41^{5} + \left(35 a + 32\right)\cdot 41^{6} + \left(23 a + 8\right)\cdot 41^{7} + \left(31 a + 32\right)\cdot 41^{8} + \left(5 a + 37\right)\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 19 + 15\cdot 41 + 36\cdot 41^{2} + 18\cdot 41^{3} + 27\cdot 41^{4} + 15\cdot 41^{5} + 12\cdot 41^{6} + 20\cdot 41^{7} + 27\cdot 41^{8} + 31\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 25 a + 29 + \left(31 a + 33\right)\cdot 41 + \left(4 a + 28\right)\cdot 41^{2} + \left(11 a + 1\right)\cdot 41^{3} + \left(40 a + 28\right)\cdot 41^{4} + \left(33 a + 18\right)\cdot 41^{5} + \left(25 a + 12\right)\cdot 41^{6} + \left(9 a + 2\right)\cdot 41^{7} + \left(9 a + 13\right)\cdot 41^{8} + \left(15 a + 19\right)\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 22 + \left(9 a + 21\right)\cdot 41 + \left(36 a + 11\right)\cdot 41^{2} + \left(29 a + 30\right)\cdot 41^{3} + 14\cdot 41^{4} + \left(7 a + 39\right)\cdot 41^{5} + \left(15 a + 14\right)\cdot 41^{6} + \left(31 a + 5\right)\cdot 41^{7} + \left(31 a + 31\right)\cdot 41^{8} + \left(25 a + 14\right)\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 13 + 11\cdot 41 + 5\cdot 41^{2} + 31\cdot 41^{3} + 11\cdot 41^{4} + 8\cdot 41^{5} + 41^{6} + 13\cdot 41^{7} + 10\cdot 41^{8} + 16\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 8 a + \left(25 a + 1\right)\cdot 41 + \left(34 a + 23\right)\cdot 41^{2} + \left(29 a + 22\right)\cdot 41^{3} + \left(17 a + 40\right)\cdot 41^{4} + \left(39 a + 27\right)\cdot 41^{5} + \left(23 a + 10\right)\cdot 41^{6} + \left(38 a + 9\right)\cdot 41^{7} + \left(9 a + 39\right)\cdot 41^{8} + \left(35 a + 23\right)\cdot 41^{9} +O\left(41^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 33 a + 24 + \left(15 a + 27\right)\cdot 41 + \left(6 a + 19\right)\cdot 41^{2} + \left(11 a + 36\right)\cdot 41^{3} + \left(23 a + 22\right)\cdot 41^{4} + \left(a + 5\right)\cdot 41^{5} + \left(17 a + 2\right)\cdot 41^{6} + \left(2 a + 19\right)\cdot 41^{7} + \left(31 a + 30\right)\cdot 41^{8} + \left(5 a + 37\right)\cdot 41^{9} +O\left(41^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,8)(6,7)$
$(1,7,8,2)$
$(4,5)$
$(2,7)$
$(3,6)$
$(1,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(3,6)(4,5)$$0$
$4$$2$$(3,6)$$2$
$4$$2$$(2,7)(3,6)$$0$
$4$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$4$$2$$(3,4)(5,6)$$-2$
$4$$2$$(1,8)(3,6)(4,5)$$-2$
$4$$2$$(1,7)(2,8)(3,6)(4,5)$$2$
$8$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$8$$2$$(1,8)(3,4)(5,6)$$0$
$4$$4$$(1,7,8,2)(3,4,6,5)$$0$
$4$$4$$(3,4,6,5)$$-2$
$4$$4$$(1,7,8,2)(3,6)(4,5)$$2$
$8$$4$$(1,4,8,5)(2,3,7,6)$$0$
$8$$4$$(1,7,8,2)(3,6)$$0$
$8$$4$$(1,7,8,2)(3,4)(5,6)$$0$
$16$$4$$(1,4)(2,3,7,6)(5,8)$$0$
$16$$4$$(1,4,2,3)(5,7,6,8)$$0$
$16$$8$$(1,4,7,6,8,5,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.