Properties

Label 4.5e2_19_29_31.8t35.1c1
Dimension 4
Group $C_2 \wr C_2\wr C_2$
Conductor $ 5^{2} \cdot 19 \cdot 29 \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2 \wr C_2\wr C_2$
Conductor:$427025= 5^{2} \cdot 19 \cdot 29 \cdot 31 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - x^{6} + 17 x^{5} - 5 x^{4} - 23 x^{3} + 6 x^{2} + 9 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2 \wr C_2\wr C_2$
Parity: Even
Determinant: 1.19_29_31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 50.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 6 + 4\cdot 41 + 7\cdot 41^{2} + 39\cdot 41^{3} + 23\cdot 41^{4} + 23\cdot 41^{5} + 15\cdot 41^{6} + 7\cdot 41^{7} + 31\cdot 41^{8} + 36\cdot 41^{9} + 34\cdot 41^{10} + 28\cdot 41^{11} + 12\cdot 41^{13} + 21\cdot 41^{14} + 38\cdot 41^{15} + 21\cdot 41^{17} + 33\cdot 41^{18} + 4\cdot 41^{19} + 35\cdot 41^{22} + 20\cdot 41^{23} + 12\cdot 41^{24} + 10\cdot 41^{25} + 2\cdot 41^{26} + 8\cdot 41^{27} + 34\cdot 41^{28} + 34\cdot 41^{29} + 18\cdot 41^{30} + 26\cdot 41^{31} + 7\cdot 41^{32} + 4\cdot 41^{33} + 41^{34} + 20\cdot 41^{35} + 18\cdot 41^{36} + 26\cdot 41^{37} + 31\cdot 41^{38} + 2\cdot 41^{39} + 33\cdot 41^{40} + 8\cdot 41^{41} + 24\cdot 41^{42} + 5\cdot 41^{43} + 40\cdot 41^{44} + 25\cdot 41^{45} + 30\cdot 41^{46} + 24\cdot 41^{47} + 22\cdot 41^{48} + 38\cdot 41^{49} +O\left(41^{ 50 }\right)$
$r_{ 2 }$ $=$ $ 36 + 36\cdot 41 + 33\cdot 41^{2} + 41^{3} + 17\cdot 41^{4} + 17\cdot 41^{5} + 25\cdot 41^{6} + 33\cdot 41^{7} + 9\cdot 41^{8} + 4\cdot 41^{9} + 6\cdot 41^{10} + 12\cdot 41^{11} + 40\cdot 41^{12} + 28\cdot 41^{13} + 19\cdot 41^{14} + 2\cdot 41^{15} + 40\cdot 41^{16} + 19\cdot 41^{17} + 7\cdot 41^{18} + 36\cdot 41^{19} + 40\cdot 41^{20} + 40\cdot 41^{21} + 5\cdot 41^{22} + 20\cdot 41^{23} + 28\cdot 41^{24} + 30\cdot 41^{25} + 38\cdot 41^{26} + 32\cdot 41^{27} + 6\cdot 41^{28} + 6\cdot 41^{29} + 22\cdot 41^{30} + 14\cdot 41^{31} + 33\cdot 41^{32} + 36\cdot 41^{33} + 39\cdot 41^{34} + 20\cdot 41^{35} + 22\cdot 41^{36} + 14\cdot 41^{37} + 9\cdot 41^{38} + 38\cdot 41^{39} + 7\cdot 41^{40} + 32\cdot 41^{41} + 16\cdot 41^{42} + 35\cdot 41^{43} + 15\cdot 41^{45} + 10\cdot 41^{46} + 16\cdot 41^{47} + 18\cdot 41^{48} + 2\cdot 41^{49} +O\left(41^{ 50 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 40 + \left(22 a + 3\right)\cdot 41 + \left(2 a + 33\right)\cdot 41^{2} + \left(36 a + 24\right)\cdot 41^{3} + \left(38 a + 26\right)\cdot 41^{4} + \left(11 a + 1\right)\cdot 41^{5} + \left(28 a + 28\right)\cdot 41^{6} + \left(4 a + 14\right)\cdot 41^{7} + \left(26 a + 22\right)\cdot 41^{8} + \left(14 a + 21\right)\cdot 41^{9} + \left(11 a + 5\right)\cdot 41^{10} + \left(32 a + 15\right)\cdot 41^{11} + \left(3 a + 2\right)\cdot 41^{12} + \left(10 a + 31\right)\cdot 41^{13} + \left(36 a + 15\right)\cdot 41^{14} + \left(7 a + 27\right)\cdot 41^{15} + \left(5 a + 27\right)\cdot 41^{16} + 17\cdot 41^{17} + \left(32 a + 4\right)\cdot 41^{18} + \left(32 a + 14\right)\cdot 41^{19} + \left(36 a + 23\right)\cdot 41^{20} + \left(23 a + 13\right)\cdot 41^{21} + \left(28 a + 7\right)\cdot 41^{22} + \left(21 a + 7\right)\cdot 41^{23} + \left(20 a + 20\right)\cdot 41^{24} + \left(15 a + 10\right)\cdot 41^{25} + \left(18 a + 23\right)\cdot 41^{26} + \left(36 a + 11\right)\cdot 41^{27} + 18 a\cdot 41^{28} + \left(16 a + 14\right)\cdot 41^{29} + \left(8 a + 1\right)\cdot 41^{30} + \left(38 a + 4\right)\cdot 41^{31} + \left(13 a + 19\right)\cdot 41^{32} + \left(18 a + 6\right)\cdot 41^{33} + \left(11 a + 38\right)\cdot 41^{34} + \left(6 a + 14\right)\cdot 41^{35} + \left(4 a + 26\right)\cdot 41^{36} + \left(39 a + 12\right)\cdot 41^{37} + \left(11 a + 10\right)\cdot 41^{38} + \left(40 a + 15\right)\cdot 41^{39} + \left(30 a + 33\right)\cdot 41^{40} + 27\cdot 41^{41} + \left(31 a + 28\right)\cdot 41^{42} + \left(17 a + 28\right)\cdot 41^{43} + 9 a\cdot 41^{44} + \left(4 a + 37\right)\cdot 41^{45} + \left(22 a + 16\right)\cdot 41^{46} + \left(17 a + 28\right)\cdot 41^{47} + \left(27 a + 37\right)\cdot 41^{48} + \left(15 a + 2\right)\cdot 41^{49} +O\left(41^{ 50 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 7 + \left(22 a + 23\right)\cdot 41 + \left(2 a + 22\right)\cdot 41^{2} + \left(36 a + 33\right)\cdot 41^{3} + \left(38 a + 15\right)\cdot 41^{4} + \left(11 a + 1\right)\cdot 41^{5} + \left(28 a + 22\right)\cdot 41^{6} + \left(4 a + 40\right)\cdot 41^{7} + \left(26 a + 26\right)\cdot 41^{8} + \left(14 a + 1\right)\cdot 41^{9} + \left(11 a + 16\right)\cdot 41^{10} + \left(32 a + 22\right)\cdot 41^{11} + \left(3 a + 18\right)\cdot 41^{12} + \left(10 a + 24\right)\cdot 41^{13} + \left(36 a + 8\right)\cdot 41^{14} + \left(7 a + 26\right)\cdot 41^{15} + \left(5 a + 5\right)\cdot 41^{16} + 28\cdot 41^{17} + \left(32 a + 22\right)\cdot 41^{18} + \left(32 a + 1\right)\cdot 41^{19} + \left(36 a + 22\right)\cdot 41^{20} + \left(23 a + 33\right)\cdot 41^{21} + \left(28 a + 12\right)\cdot 41^{22} + \left(21 a + 38\right)\cdot 41^{23} + \left(20 a + 21\right)\cdot 41^{24} + \left(15 a + 4\right)\cdot 41^{25} + \left(18 a + 19\right)\cdot 41^{26} + \left(36 a + 20\right)\cdot 41^{27} + \left(18 a + 20\right)\cdot 41^{28} + \left(16 a + 37\right)\cdot 41^{29} + \left(8 a + 30\right)\cdot 41^{30} + \left(38 a + 12\right)\cdot 41^{31} + \left(13 a + 18\right)\cdot 41^{32} + \left(18 a + 34\right)\cdot 41^{33} + \left(11 a + 27\right)\cdot 41^{34} + \left(6 a + 18\right)\cdot 41^{35} + \left(4 a + 8\right)\cdot 41^{36} + \left(39 a + 38\right)\cdot 41^{37} + \left(11 a + 33\right)\cdot 41^{38} + \left(40 a + 39\right)\cdot 41^{39} + \left(30 a + 36\right)\cdot 41^{40} + \left(31 a + 2\right)\cdot 41^{42} + \left(17 a + 31\right)\cdot 41^{43} + \left(9 a + 29\right)\cdot 41^{44} + 4 a\cdot 41^{45} + \left(22 a + 3\right)\cdot 41^{46} + \left(17 a + 23\right)\cdot 41^{47} + \left(27 a + 20\right)\cdot 41^{48} + \left(15 a + 18\right)\cdot 41^{49} +O\left(41^{ 50 }\right)$
$r_{ 5 }$ $=$ $ 34 a + 11 + \left(27 a + 16\right)\cdot 41 + 22 a\cdot 41^{2} + \left(26 a + 33\right)\cdot 41^{3} + \left(5 a + 4\right)\cdot 41^{4} + \left(33 a + 35\right)\cdot 41^{5} + 35\cdot 41^{6} + \left(34 a + 10\right)\cdot 41^{7} + \left(40 a + 17\right)\cdot 41^{8} + \left(14 a + 18\right)\cdot 41^{9} + \left(3 a + 2\right)\cdot 41^{10} + \left(14 a + 1\right)\cdot 41^{11} + \left(40 a + 8\right)\cdot 41^{12} + \left(39 a + 1\right)\cdot 41^{13} + \left(30 a + 35\right)\cdot 41^{14} + 34\cdot 41^{15} + \left(7 a + 30\right)\cdot 41^{16} + \left(3 a + 39\right)\cdot 41^{17} + \left(37 a + 27\right)\cdot 41^{18} + \left(24 a + 1\right)\cdot 41^{19} + \left(23 a + 18\right)\cdot 41^{20} + \left(28 a + 30\right)\cdot 41^{21} + \left(13 a + 34\right)\cdot 41^{22} + \left(28 a + 25\right)\cdot 41^{23} + \left(a + 11\right)\cdot 41^{24} + \left(29 a + 39\right)\cdot 41^{25} + 33\cdot 41^{26} + \left(33 a + 32\right)\cdot 41^{27} + \left(30 a + 31\right)\cdot 41^{28} + \left(37 a + 40\right)\cdot 41^{29} + \left(2 a + 34\right)\cdot 41^{30} + \left(5 a + 34\right)\cdot 41^{31} + \left(5 a + 35\right)\cdot 41^{32} + \left(13 a + 23\right)\cdot 41^{33} + \left(16 a + 2\right)\cdot 41^{34} + \left(33 a + 40\right)\cdot 41^{35} + \left(13 a + 36\right)\cdot 41^{36} + \left(33 a + 38\right)\cdot 41^{37} + \left(5 a + 7\right)\cdot 41^{38} + \left(33 a + 35\right)\cdot 41^{39} + \left(5 a + 7\right)\cdot 41^{40} + \left(33 a + 35\right)\cdot 41^{41} + \left(33 a + 6\right)\cdot 41^{42} + \left(14 a + 15\right)\cdot 41^{43} + \left(15 a + 25\right)\cdot 41^{44} + \left(29 a + 4\right)\cdot 41^{45} + \left(6 a + 25\right)\cdot 41^{46} + \left(8 a + 11\right)\cdot 41^{47} + \left(11 a + 28\right)\cdot 41^{48} + \left(6 a + 16\right)\cdot 41^{49} +O\left(41^{ 50 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 35 + \left(18 a + 17\right)\cdot 41 + \left(38 a + 18\right)\cdot 41^{2} + \left(4 a + 7\right)\cdot 41^{3} + \left(2 a + 25\right)\cdot 41^{4} + \left(29 a + 39\right)\cdot 41^{5} + \left(12 a + 18\right)\cdot 41^{6} + 36 a\cdot 41^{7} + \left(14 a + 14\right)\cdot 41^{8} + \left(26 a + 39\right)\cdot 41^{9} + \left(29 a + 24\right)\cdot 41^{10} + \left(8 a + 18\right)\cdot 41^{11} + \left(37 a + 22\right)\cdot 41^{12} + \left(30 a + 16\right)\cdot 41^{13} + \left(4 a + 32\right)\cdot 41^{14} + \left(33 a + 14\right)\cdot 41^{15} + \left(35 a + 35\right)\cdot 41^{16} + \left(40 a + 12\right)\cdot 41^{17} + \left(8 a + 18\right)\cdot 41^{18} + \left(8 a + 39\right)\cdot 41^{19} + \left(4 a + 18\right)\cdot 41^{20} + \left(17 a + 7\right)\cdot 41^{21} + \left(12 a + 28\right)\cdot 41^{22} + \left(19 a + 2\right)\cdot 41^{23} + \left(20 a + 19\right)\cdot 41^{24} + \left(25 a + 36\right)\cdot 41^{25} + \left(22 a + 21\right)\cdot 41^{26} + \left(4 a + 20\right)\cdot 41^{27} + \left(22 a + 20\right)\cdot 41^{28} + \left(24 a + 3\right)\cdot 41^{29} + \left(32 a + 10\right)\cdot 41^{30} + \left(2 a + 28\right)\cdot 41^{31} + \left(27 a + 22\right)\cdot 41^{32} + \left(22 a + 6\right)\cdot 41^{33} + \left(29 a + 13\right)\cdot 41^{34} + \left(34 a + 22\right)\cdot 41^{35} + \left(36 a + 32\right)\cdot 41^{36} + \left(a + 2\right)\cdot 41^{37} + \left(29 a + 7\right)\cdot 41^{38} + 41^{39} + \left(10 a + 4\right)\cdot 41^{40} + \left(40 a + 40\right)\cdot 41^{41} + \left(9 a + 38\right)\cdot 41^{42} + \left(23 a + 9\right)\cdot 41^{43} + \left(31 a + 11\right)\cdot 41^{44} + \left(36 a + 40\right)\cdot 41^{45} + \left(18 a + 37\right)\cdot 41^{46} + \left(23 a + 17\right)\cdot 41^{47} + \left(13 a + 20\right)\cdot 41^{48} + \left(25 a + 22\right)\cdot 41^{49} +O\left(41^{ 50 }\right)$
$r_{ 7 }$ $=$ $ 29 a + 2 + \left(18 a + 37\right)\cdot 41 + \left(38 a + 7\right)\cdot 41^{2} + \left(4 a + 16\right)\cdot 41^{3} + \left(2 a + 14\right)\cdot 41^{4} + \left(29 a + 39\right)\cdot 41^{5} + \left(12 a + 12\right)\cdot 41^{6} + \left(36 a + 26\right)\cdot 41^{7} + \left(14 a + 18\right)\cdot 41^{8} + \left(26 a + 19\right)\cdot 41^{9} + \left(29 a + 35\right)\cdot 41^{10} + \left(8 a + 25\right)\cdot 41^{11} + \left(37 a + 38\right)\cdot 41^{12} + \left(30 a + 9\right)\cdot 41^{13} + \left(4 a + 25\right)\cdot 41^{14} + \left(33 a + 13\right)\cdot 41^{15} + \left(35 a + 13\right)\cdot 41^{16} + \left(40 a + 23\right)\cdot 41^{17} + \left(8 a + 36\right)\cdot 41^{18} + \left(8 a + 26\right)\cdot 41^{19} + \left(4 a + 17\right)\cdot 41^{20} + \left(17 a + 27\right)\cdot 41^{21} + \left(12 a + 33\right)\cdot 41^{22} + \left(19 a + 33\right)\cdot 41^{23} + \left(20 a + 20\right)\cdot 41^{24} + \left(25 a + 30\right)\cdot 41^{25} + \left(22 a + 17\right)\cdot 41^{26} + \left(4 a + 29\right)\cdot 41^{27} + \left(22 a + 40\right)\cdot 41^{28} + \left(24 a + 26\right)\cdot 41^{29} + \left(32 a + 39\right)\cdot 41^{30} + \left(2 a + 36\right)\cdot 41^{31} + \left(27 a + 21\right)\cdot 41^{32} + \left(22 a + 34\right)\cdot 41^{33} + \left(29 a + 2\right)\cdot 41^{34} + \left(34 a + 26\right)\cdot 41^{35} + \left(36 a + 14\right)\cdot 41^{36} + \left(a + 28\right)\cdot 41^{37} + \left(29 a + 30\right)\cdot 41^{38} + 25\cdot 41^{39} + \left(10 a + 7\right)\cdot 41^{40} + \left(40 a + 13\right)\cdot 41^{41} + \left(9 a + 12\right)\cdot 41^{42} + \left(23 a + 12\right)\cdot 41^{43} + \left(31 a + 40\right)\cdot 41^{44} + \left(36 a + 3\right)\cdot 41^{45} + \left(18 a + 24\right)\cdot 41^{46} + \left(23 a + 12\right)\cdot 41^{47} + \left(13 a + 3\right)\cdot 41^{48} + \left(25 a + 38\right)\cdot 41^{49} +O\left(41^{ 50 }\right)$
$r_{ 8 }$ $=$ $ 7 a + 31 + \left(13 a + 24\right)\cdot 41 + \left(18 a + 40\right)\cdot 41^{2} + \left(14 a + 7\right)\cdot 41^{3} + \left(35 a + 36\right)\cdot 41^{4} + \left(7 a + 5\right)\cdot 41^{5} + \left(40 a + 5\right)\cdot 41^{6} + \left(6 a + 30\right)\cdot 41^{7} + 23\cdot 41^{8} + \left(26 a + 22\right)\cdot 41^{9} + \left(37 a + 38\right)\cdot 41^{10} + \left(26 a + 39\right)\cdot 41^{11} + 32\cdot 41^{12} + \left(a + 39\right)\cdot 41^{13} + \left(10 a + 5\right)\cdot 41^{14} + \left(40 a + 6\right)\cdot 41^{15} + \left(33 a + 10\right)\cdot 41^{16} + \left(37 a + 1\right)\cdot 41^{17} + \left(3 a + 13\right)\cdot 41^{18} + \left(16 a + 39\right)\cdot 41^{19} + \left(17 a + 22\right)\cdot 41^{20} + \left(12 a + 10\right)\cdot 41^{21} + \left(27 a + 6\right)\cdot 41^{22} + \left(12 a + 15\right)\cdot 41^{23} + \left(39 a + 29\right)\cdot 41^{24} + \left(11 a + 1\right)\cdot 41^{25} + \left(40 a + 7\right)\cdot 41^{26} + \left(7 a + 8\right)\cdot 41^{27} + \left(10 a + 9\right)\cdot 41^{28} + 3 a\cdot 41^{29} + \left(38 a + 6\right)\cdot 41^{30} + \left(35 a + 6\right)\cdot 41^{31} + \left(35 a + 5\right)\cdot 41^{32} + \left(27 a + 17\right)\cdot 41^{33} + \left(24 a + 38\right)\cdot 41^{34} + 7 a\cdot 41^{35} + \left(27 a + 4\right)\cdot 41^{36} + \left(7 a + 2\right)\cdot 41^{37} + \left(35 a + 33\right)\cdot 41^{38} + \left(7 a + 5\right)\cdot 41^{39} + \left(35 a + 33\right)\cdot 41^{40} + \left(7 a + 5\right)\cdot 41^{41} + \left(7 a + 34\right)\cdot 41^{42} + \left(26 a + 25\right)\cdot 41^{43} + \left(25 a + 15\right)\cdot 41^{44} + \left(11 a + 36\right)\cdot 41^{45} + \left(34 a + 15\right)\cdot 41^{46} + \left(32 a + 29\right)\cdot 41^{47} + \left(29 a + 12\right)\cdot 41^{48} + \left(34 a + 24\right)\cdot 41^{49} +O\left(41^{ 50 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)$
$(4,6)$
$(1,5)(2,8)$
$(3,7)$
$(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,7)(4,6)(5,8)$$-4$
$2$$2$$(3,7)(4,6)$$0$
$4$$2$$(3,7)$$2$
$4$$2$$(1,2)(3,7)$$0$
$4$$2$$(1,5)(2,8)(3,4)(6,7)$$0$
$4$$2$$(3,4)(6,7)$$2$
$4$$2$$(1,2)(3,7)(4,6)$$-2$
$4$$2$$(1,5)(2,8)(3,7)(4,6)$$-2$
$8$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$8$$2$$(1,2)(3,4)(6,7)$$0$
$4$$4$$(1,8,2,5)(3,6,7,4)$$0$
$4$$4$$(3,6,7,4)$$2$
$4$$4$$(1,8,2,5)(3,7)(4,6)$$-2$
$8$$4$$(1,3,2,7)(4,8,6,5)$$0$
$8$$4$$(1,2)(3,6,7,4)$$0$
$8$$4$$(1,5)(2,8)(3,6,7,4)$$0$
$16$$4$$(1,3,2,7)(4,5)(6,8)$$0$
$16$$4$$(1,3,5,4)(2,7,8,6)$$0$
$16$$8$$(1,3,8,6,2,7,5,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.