Properties

Label 4.5e2_17e3.10t12.1
Dimension 4
Group $S_5$
Conductor $ 5^{2} \cdot 17^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$122825= 5^{2} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{5} + x^{3} - 2 x^{2} - 2 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 36 + \left(33 a + 42\right)\cdot 59 + \left(37 a + 20\right)\cdot 59^{2} + \left(50 a + 24\right)\cdot 59^{3} + \left(19 a + 47\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 24\cdot 59 + 47\cdot 59^{2} + 17\cdot 59^{3} + 37\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 a + 27 + \left(50 a + 10\right)\cdot 59 + \left(22 a + 26\right)\cdot 59^{2} + \left(30 a + 15\right)\cdot 59^{3} + \left(34 a + 6\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 a + 58 + \left(8 a + 29\right)\cdot 59 + \left(36 a + 57\right)\cdot 59^{2} + \left(28 a + 22\right)\cdot 59^{3} + \left(24 a + 10\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 53 a + 42 + \left(25 a + 10\right)\cdot 59 + \left(21 a + 25\right)\cdot 59^{2} + \left(8 a + 37\right)\cdot 59^{3} + \left(39 a + 16\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $-2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.