Properties

Label 4.5e2_1619.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 1619 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$40475= 5^{2} \cdot 1619 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 11 x^{4} + 15 x^{3} + 33 x^{2} - 18 x + 407 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd
Determinant: 1.1619.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 24 + \left(11 a + 37\right)\cdot 41 + \left(11 a + 34\right)\cdot 41^{2} + \left(11 a + 22\right)\cdot 41^{3} + \left(30 a + 4\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 28 + \left(24 a + 35\right)\cdot 41 + \left(27 a + 29\right)\cdot 41^{2} + \left(22 a + 1\right)\cdot 41^{3} + \left(8 a + 18\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 21\cdot 41 + 4\cdot 41^{2} + 38\cdot 41^{3} + 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 40 a + 31 + \left(16 a + 24\right)\cdot 41 + \left(13 a + 6\right)\cdot 41^{2} + \left(18 a + 1\right)\cdot 41^{3} + \left(32 a + 21\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 + 33\cdot 41 + 30\cdot 41^{2} + 13\cdot 41^{3} + 34\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 2 + \left(29 a + 11\right)\cdot 41 + \left(29 a + 16\right)\cdot 41^{2} + \left(29 a + 4\right)\cdot 41^{3} + \left(10 a + 2\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$2$
$6$$2$$(2,3)$$0$
$9$$2$$(1,5)(2,3)$$0$
$4$$3$$(1,5,6)(2,3,4)$$1$
$4$$3$$(1,5,6)$$-2$
$18$$4$$(1,2,5,3)(4,6)$$0$
$12$$6$$(1,3,5,4,6,2)$$-1$
$12$$6$$(1,5,6)(2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.