Properties

Label 4.5e2_15139e3.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 15139^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$86742428265475= 5^{2} \cdot 15139^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 4 x^{4} - 5 x^{3} - 7 x^{2} + 12 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd
Determinant: 1.15139.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 2\cdot 29 + 18\cdot 29^{2} + 10\cdot 29^{3} + 17\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 3 + \left(22 a + 20\right)\cdot 29 + \left(27 a + 19\right)\cdot 29^{2} + \left(4 a + 10\right)\cdot 29^{3} + \left(18 a + 6\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 2 + \left(12 a + 18\right)\cdot 29 + \left(4 a + 25\right)\cdot 29^{2} + \left(24 a + 7\right)\cdot 29^{3} + \left(11 a + 12\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 + 11\cdot 29 + 26\cdot 29^{2} + 12\cdot 29^{3} + 27\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 11 + \left(16 a + 28\right)\cdot 29 + \left(24 a + 5\right)\cdot 29^{2} + \left(4 a + 8\right)\cdot 29^{3} + \left(17 a + 18\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 19 + \left(6 a + 6\right)\cdot 29 + \left(a + 20\right)\cdot 29^{2} + \left(24 a + 7\right)\cdot 29^{3} + \left(10 a + 5\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)$
$(1,3)(2,4)(5,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$0$
$6$$2$$(4,5)$$-2$
$9$$2$$(2,6)(4,5)$$0$
$4$$3$$(1,2,6)(3,4,5)$$-2$
$4$$3$$(3,4,5)$$1$
$18$$4$$(1,3)(2,4,6,5)$$0$
$12$$6$$(1,3,2,4,6,5)$$0$
$12$$6$$(1,2,6)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.