Properties

Label 4.5e2_13e3_17e2.12t36.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 13^{3} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$15873325= 5^{2} \cdot 13^{3} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} - 2 x^{3} + 3 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 63 + \left(51 a + 64\right)\cdot 103 + \left(41 a + 64\right)\cdot 103^{2} + \left(7 a + 39\right)\cdot 103^{3} + \left(22 a + 75\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 92 + 67\cdot 103 + 90\cdot 103^{2} + 67\cdot 103^{3} + 23\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 100 a + 66 + \left(51 a + 9\right)\cdot 103 + \left(61 a + 55\right)\cdot 103^{2} + \left(95 a + 5\right)\cdot 103^{3} + \left(80 a + 90\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 50 + 25\cdot 103 + 11\cdot 103^{2} + 92\cdot 103^{3} + 23\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 75 a + 85 + \left(20 a + 97\right)\cdot 103 + \left(87 a + 61\right)\cdot 103^{2} + \left(98 a + 97\right)\cdot 103^{3} + \left(58 a + 67\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 57 + \left(82 a + 43\right)\cdot 103 + \left(15 a + 25\right)\cdot 103^{2} + \left(4 a + 6\right)\cdot 103^{3} + \left(44 a + 28\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,4)(2,5)(3,6)$ $0$
$6$ $2$ $(1,2)$ $-2$
$9$ $2$ $(1,2)(4,5)$ $0$
$4$ $3$ $(1,2,3)(4,5,6)$ $-2$
$4$ $3$ $(4,5,6)$ $1$
$18$ $4$ $(1,5,2,4)(3,6)$ $0$
$12$ $6$ $(1,4,2,5,3,6)$ $0$
$12$ $6$ $(1,2)(4,5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.