Properties

Label 4.5e2_13_17e2.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 13 \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$93925= 5^{2} \cdot 13 \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} + x^{3} - 2 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 69\cdot 103 + 4\cdot 103^{2} + 23\cdot 103^{3} + 17\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 101 a + 91 + \left(65 a + 85\right)\cdot 103 + \left(23 a + 18\right)\cdot 103^{2} + \left(20 a + 93\right)\cdot 103^{3} + \left(88 a + 8\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 87 + \left(102 a + 43\right)\cdot 103 + \left(102 a + 25\right)\cdot 103^{2} + \left(93 a + 66\right)\cdot 103^{3} + \left(31 a + 56\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 89 + \left(37 a + 50\right)\cdot 103 + \left(79 a + 79\right)\cdot 103^{2} + \left(82 a + 89\right)\cdot 103^{3} + \left(14 a + 76\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 100 a + 90 + 39\cdot 103 + 26\cdot 103^{2} + \left(9 a + 57\right)\cdot 103^{3} + \left(71 a + 97\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 30 + 19\cdot 103 + 51\cdot 103^{2} + 82\cdot 103^{3} + 51\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(1,3)(2,5)(4,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,5)(4,6)$ $2$
$6$ $2$ $(2,4)$ $0$
$9$ $2$ $(2,4)(5,6)$ $0$
$4$ $3$ $(1,2,4)$ $-2$
$4$ $3$ $(1,2,4)(3,5,6)$ $1$
$18$ $4$ $(1,3)(2,6,4,5)$ $0$
$12$ $6$ $(1,5,2,6,4,3)$ $-1$
$12$ $6$ $(2,4)(3,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.