Properties

Label 4.5e2_11e3_1451e3.12t36.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 11^{3} \cdot 1451^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$101653023717025= 5^{2} \cdot 11^{3} \cdot 1451^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 6 x^{4} + 6 x^{3} + 12 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Even
Determinant: 1.11_1451.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 13 + 8\cdot 19 + 14\cdot 19^{2} + 11\cdot 19^{3} + 17\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + \left(12 a + 16\right)\cdot 19 + \left(16 a + 17\right)\cdot 19^{2} + \left(16 a + 12\right)\cdot 19^{3} + \left(6 a + 3\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 14 + \left(6 a + 14\right)\cdot 19 + \left(2 a + 2\right)\cdot 19^{2} + \left(2 a + 13\right)\cdot 19^{3} + \left(12 a + 12\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 9 + \left(11 a + 3\right)\cdot 19 + \left(8 a + 13\right)\cdot 19^{2} + \left(7 a + 13\right)\cdot 19^{3} + \left(8 a + 9\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 + 7\cdot 19 + 17\cdot 19^{2} + 11\cdot 19^{3} + 2\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 17 + \left(7 a + 6\right)\cdot 19 + \left(10 a + 10\right)\cdot 19^{2} + \left(11 a + 12\right)\cdot 19^{3} + \left(10 a + 10\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(3,5)$$-2$
$9$$2$$(3,5)(4,6)$$0$
$4$$3$$(1,4,6)(2,3,5)$$-2$
$4$$3$$(1,4,6)$$1$
$18$$4$$(1,2)(3,6,5,4)$$0$
$12$$6$$(1,3,4,5,6,2)$$0$
$12$$6$$(1,4,6)(3,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.