Properties

Label 4.5e2_11e2_19e2.8t15.2c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 5^{2} \cdot 11^{2} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$1092025= 5^{2} \cdot 11^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 6 x^{6} - x^{5} + 4 x^{4} + 13 x^{3} + 9 x^{2} + 10 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 31\cdot 191 + 80\cdot 191^{2} + 186\cdot 191^{3} + 157\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 45 + 161\cdot 191 + 51\cdot 191^{2} + 100\cdot 191^{3} + 32\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 105 + 141\cdot 191 + 184\cdot 191^{2} + 110\cdot 191^{3} + 15\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 115 + 189\cdot 191 + 152\cdot 191^{2} + 83\cdot 191^{3} + 116\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 156 + 7\cdot 191 + 134\cdot 191^{2} + 2\cdot 191^{3} + 80\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 159 + 83\cdot 191 + 129\cdot 191^{2} + 3\cdot 191^{3} + 168\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 180 + 82\cdot 191 + 88\cdot 191^{2} + 16\cdot 191^{3} + 121\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 183 + 65\cdot 191 + 133\cdot 191^{2} + 68\cdot 191^{3} + 72\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,8,4,5,6,2,3)$
$(1,5)(2,8)(3,4)(6,7)$
$(1,8,5,2)(3,7,4,6)$
$(1,8)(2,5)(6,7)$
$(1,5)(2,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,8)(3,4)(6,7)$$-4$
$2$$2$$(1,5)(2,8)$$0$
$4$$2$$(1,8)(2,5)(6,7)$$0$
$4$$2$$(1,4)(2,6)(3,5)(7,8)$$0$
$4$$2$$(1,2)(5,8)(6,7)$$0$
$2$$4$$(1,8,5,2)(3,7,4,6)$$0$
$2$$4$$(1,2,5,8)(3,7,4,6)$$0$
$4$$4$$(1,6,5,7)(2,3,8,4)$$0$
$4$$8$$(1,7,8,4,5,6,2,3)$$0$
$4$$8$$(1,7,2,3,5,6,8,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.