Properties

Label 4.5e2_11e2_19e2.8t15.1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 5^{2} \cdot 11^{2} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$1092025= 5^{2} \cdot 11^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 6 x^{6} + 8 x^{5} + 11 x^{4} - 15 x^{3} - 29 x^{2} + 55 x - 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 21 + 129\cdot 191 + 143\cdot 191^{2} + 136\cdot 191^{3} + 94\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 44 + 189\cdot 191 + 51\cdot 191^{2} + 4\cdot 191^{3} + 74\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 + 24\cdot 191 + 34\cdot 191^{2} + 174\cdot 191^{3} + 155\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 61 + 125\cdot 191 + 147\cdot 191^{2} + 154\cdot 191^{3} + 58\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 75 + 124\cdot 191 + 119\cdot 191^{2} + 163\cdot 191^{3} + 68\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 82 + 134\cdot 191 + 59\cdot 191^{2} + 27\cdot 191^{3} + 125\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 100 + 96\cdot 191 + 149\cdot 191^{2} + 166\cdot 191^{3} + 8\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 144 + 131\cdot 191 + 57\cdot 191^{2} + 127\cdot 191^{3} + 177\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,3,2)(4,8,5,6)$
$(1,7,8,4,3,2,6,5)$
$(2,7)(4,5)$
$(1,3)(2,7)(4,5)(6,8)$
$(1,8,3,6)(2,4,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $-4$
$2$ $2$ $(2,7)(4,5)$ $0$
$4$ $2$ $(1,4)(2,6)(3,5)(7,8)$ $0$
$4$ $2$ $(2,5)(4,7)(6,8)$ $0$
$4$ $2$ $(1,8)(3,6)(4,5)$ $0$
$2$ $4$ $(1,8,3,6)(2,4,7,5)$ $0$
$2$ $4$ $(1,6,3,8)(2,4,7,5)$ $0$
$4$ $4$ $(1,7,3,2)(4,8,5,6)$ $0$
$4$ $8$ $(1,5,6,2,3,4,8,7)$ $0$
$4$ $8$ $(1,5,8,7,3,4,6,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.